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Abstract. Since the emergence of the Transformer, many variations of
the original architecture have been created. Revisions and taxonomies
have appeared that group these models from different points of view.
However, no review studies the tasks faced according to the type of
data used. In this paper, the modifications applied to Transformers to
work with different input data (text, image, video, etc.) and to solve
disparate problems are analysed. Building on the foundations of exist-
ing taxonomies, this work proposes a new one that relates input data
types to applications. The study shows open challenges and can serve as
a guideline for the development of Transformer networks for specific ap-
plications with different types of data by observing development trends.
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1 Introduction

Transformer [59] was introduced in 2017 as a sequence-to-sequence network
based only on attention mechanisms, removing recurrence and convolutions. Its
use has spread, and numerous models have been developed that strictly follow
the original architecture, make minor modifications to it or severally change it.
They initially emerged as networks to carry out machine translation with text
sequences. However, currently there are models that solve different tasks with
any input data. This has resulted in the emergence of studies and taxonomies
that categorize Transformers from different points of view. Nevertheless, there
is no review of these at application level or according to the type of data used.

In this paper a survey of Transformers, according to applications and the
type of data these networks work with, is carried out. This aims to provide
insights into common modifications for the use of different types of data and

⋆ The research carried out in this study is part of the project ”ToSmartEADs: Towards
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Data Science” financed by the Ministry of Science, Innovation and Universities with
code PID2019-107793GB-I00 / AEI / 10.13039 / 501100011033.
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their respective applications. Not all AI model users are Transformer experts,
so choosing the right one for the task at hand is not always easy. This is where
this paper would be helpful. In addition, knowing the most frequently used
architecture and components in each type of application (with their possibilities
and limitations) can help in the development of new proposals to address research
challenges in the area.

The module-level and architecture-level taxonomy proposed in [42] is used to
group the modifications and components used. This makes possible to observe
the adaptations applied in architectures that work with a particular data type
or achieving a certain goal.

This paper is organized as follows: Section 2 introduces the original Trans-
former [59] and the taxonomy at the module and architecture level [42]. Section
3 describes the methodology followed and our review from the point of view of
the applications and data types used in Transformer networks. Finally, section
4 contains our conclusions.

2 Background

The Transformer [59] is composed of encoders and decoders with a similar struc-
ture: Multi-Head Attention (MHA) and Feed Forward Networks (FFN) as main
elements, with residual connections and normalization after them. Positional
encoding is included at the bottom of encoder and decoder stacks to add infor-
mation about the position of the tokens in the sequence. Moreover, the decoder
contains a Masked MHA to prevent positions from attending to subsequent po-
sitions and a MHA over the output of the encoder stack.

Transformer networks have become one of the most widely used and powerful
architectures, with many variations and modifications to the original definition
emerging. Taxonomies and studies are beginning to appear that group all Trans-
formers models from different points of view. Given that, our aim is to present
a review of Transformers applications based on the type of data these networks
work with, we analyse them considering the module-level and architecture-level
categorizations presented in [42].

To perform the module-level taxonomies, vanilla Transformer is divided into
four different modules: Attention, Positional Encoding (PE), Normalization and
FFN. The most extensively studied is the attention-level categorization with the
improvements on attention mechanism divided into Sparse attention (Sparse),
Linearized attention, Query Prototype, Memory Compression (MC), Low-Rank
self-attention, attention With Prior and Improved Multi-Head Mechanism. The
positional information is encoded as Absolute Sinusoidal Position Encodings
(Absolute) in [59]. This is the first of the classes within PE of [42], along with Rel-
ative Position Representations (Relative), Implicit Representations and Other
Representations (Other). With regard to the classification of the normalization,
a distinction is made between those works in which the placement of these lay-
ers is modified (Placement), those that substitutes the normalization formula
(Substitutes) and those that removes it (Removed). The last module to catego-
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rize is FFN. Three categories are grouped: those studies that explore different
Activation Functions (AF), those that replace FFN with similar structures with
many more parameters, and those that remove these layers (Removed). In the
taxonomy of Attention and FFN we have included two additional classes: Origi-
nal and Other, as many models use original components or major modifications
that do not fit into the other classes.

The architecture-level taxonomy proposed in [42] studies Transformers that
modify the original one beyond the modules, making higher-level modifications.
It differentiates those studies that adapt the Transformer to be lightweight
(Lightweight) in terms of model size, memory, computation time or Floating
Point Operations Per Second. Architectures that strengthen cross-block con-
nectivity are grouped in a separate category. Another class includes those that
adapt computation time conditioned to inputs. Finally, there are the Transform-
ers with Divide-and-Conquer Strategies, among which are the recurrent (Recur-
rent), where a cache memory is maintained to incorporate the history informa-
tion, and the hierarchical (Hierarchical), which decomposes inputs hierarchically
into elements of finer granularity. In addition, several studies have explored al-
ternative architectures for Transformer (Alternative). In the Normalization and
Architecture, the Original class has also been included, as many models use the
one proposed by Vaswani [59].

3 Analysis of transformer model applications

This section reviews the different applications that have been addressed with
Transformers. To this end, first the review methodology is presented and then
the different categories that have been defined.

3.1 Methodology

This review of Transformers applications based on the type of data analyse pro-
posals with a significant contribution between 2017 and 2023. For this purpose,
we have gathered relevant articles related to Transformer networks from differ-
ent leading bibliographic databases such as Scopus, Google Scholar, Elsevier,
Springer, IEEE, ACM or arXiv. The documents were analysed taking into ac-
count the publication site (journal, congress, conference, or other), the authors,
the year of publication, the database where they were published, the number of
citations, the task solved and the contribution made.

Subsequently, and given the limited number of pages present in a conference
article, the most relevant ones were selected given the characteristics above for
inclusion in this study. These are categorized according to the type of data used
and the application to be performed. Furthermore, every element of these models
is classified according to module-level and architecture taxonomies described in
[42].

In the following subsections, tables have been included following the same
structure to contain all the information in a more visual way. These tables include
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a column for the target application of the model (the acronyms used in this
column are described at the beginning of each subsection). Then, a column
is included for each Transformer module: Attention, PE, Normalization (Norm)
and FFN. Finally, a column is included for the Architecture (Arch) and a column
for the Reference (Ref) of the corresponding paper. In addition, in cases where
the type of data used may change slightly (such as multimodal), a first column
has been included detailing the type of data used. The categories used in the
modules and the architecture are described in Section 2.

3.2 Text

Transformers emerged as an architecture for handling text data, with a focus
on machine translation, and most Transformer networks work with text data as
input. All these are shown in this category (Table 1) describing the jobs they
perform, among which we found: Translation, Generation and Prediction. In ad-
dition, there are those that solve multiple with a single architecture (Multitask).

Table 1. Taxonomy of Textual Data Processing Transformers

Application Attention PE Norm FFN Arch Ref

Translation Original Absolute Original Original Lightweight [41]
Translation Original Absolute Original Original Lightweight [18]
Translation Original Absolute Original Original Lightweight [61]
Translation Original Absolute Original Original Lightweight [60]
Translation Original Absolute Original Original Original [4]
Multitask Original Absolute Original Original Lightweight [35]
Multitask Original Absolute Original Original Original [14]
Multitask Original Absolute Original Original Original [46]
Multitask Linearized Relative Original Original Lightweight [51]
Generation Original Absolute Original Original Original [65]
Generation Original Absolute Original Original Original [62]
Generation Original Absolute Placement Original Original [66]
Generation Sparse Absolute Substitutes Original Original [52]
Prediction Other Absolute Original Original Original [1]
Prediction Original Absolute Original Original Original [49]
Prediction Sparse Relative Original Original Original [64]

Most of the models that make machine translation try to improve on the
vanilla Transformer. The one that is developed in [41] compresses the decoder
sublayers into one for a higher degree of parallelism. In the case of [60], they pro-
pose to produce multiple successive words in parallel at each time step, keeping
the autoregressive property and improving translation speed. One of the most
popular works can be found in [18], where the architecture avoids this autoregres-
sive property and produces its outputs in parallel. Furthermore, as a proposed
improvement to the previous one in quality of decoder hidden representations is
[61]. In contrast to the above that seek to improve the original, [4] proposes the
incorporation of small adaptive layers to adapt the machine translation.

Many Transformer architectures are designed to face multiple tasks with text,
an example is BERT [14], it has been used as a backbone for many studies like in
[35, 46], which make minor modifications. In the former, memory consumption
is reduced, while in the latter, clinical domain knowledge is integrated. Another
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multitasking model is presented in [51], modifying the attention to be linear and
using relative PE to improve the efficiency of the vanilla transformer.

With regard to the text generation task, the study in [66] shows a network
that generates answers to questions with the incorporation of convolutions in
the Vaswani encoder. The proposed in [52] learns dynamic patterns of sparse
attention for language modelling (understanding this as a text generation task).
Another example is the proposal in [62] of a generative dialogue system combin-
ing transfer learning and Transformers. In [65], they revisited triple extraction
as a sequence generation job (which jointly extracts entities and relations).

About prediction task, in [49] an adaptation of BERT for rare diseases di-
agnosis is proposed. The proposal in [64] modifies the original architecture to
perform Named Entity Recognition, using sparse attention and relative PE. The
model described in [1] performs relation and event extraction tasks to test their
multilingual transferability (understanding these as prediction), modifying at-
tention and extracting syntactic distances.

As can be seen in the Table 1, most models that work with text use the
original Transformer. In some studies minor modifications are made, especially
with sparse attention, changes in normalization or the use of relative PE. Fur-
thermore, most of those that perform machine translation use lightweight archi-
tectures, trying to improve the original, whose goal was sequences translation.

3.3 Image and Video

Table 2 lists all architectures included in this category based on Transformers for
solving various tasks such as Object Detection (OD), Image Generation, Image
Captioning and Classification. Also, there is a multitasking model (Multitask).

Table 2. Taxonomy of Image and Video Data Processing Transformers

Data Application Attention PE Norm FFN Arch Ref

Image OD Sparse Absolute Original Original Original [73]
Image OD Original Absolute Substitutes AF (Leaky ReLU) Original [58]
Image OD Original Absolute Original Original Original [2]
Image OD Original Absolute Original Original Original [6]
Image Generation Other Relative Substitutes AF (GELU) Original [33]
Image Generation Sparse Absolute Original Original Original [48]
Image Captioning Original Absolute Original Original Original [31]
Image Captioning Original Abs / Rel Original Original Original [44]
Image Captioning Other Absolute Original Original Original [11]
Image Classification Original Absolute Placement AF (GELU) Hierarchical [16]
Image Classification Original Other Placement AF (GELU) Original [23]
Image Classification Original Absolute Placement Original Original [69]
Image Classification Other Absolute Placement AF (GELU) Hierarchical [5]
Image Classification Other Absolute Placement AF (GELU) Hierarchical [30]
Image Classification Original Absolute Original Original Original [8]
Image Multitask Other Absolute Placement AF (GELU) Hierarchical [43]
Video Classification Original Absolute Placement AF (GELU) Original [68]
Video Classification Original Absolute Placement Original Original [3]

For object detection, the proposal in [2] applies feature extraction before
the Transformer encoder and a classifier after it. In the same way, [6] presents
DETR (DEtection TRansformer) that uses a Transformer encoder-decoder with
little changes, with a Convolutional Neural Network (CNN) ahead and a FFN
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following it. Based on the latter, the model defined in [73] improves DETR with
a deformable attention module. Finally, [58] faces place recognition and address
as an OD task. It extracts lines for input images and uses a Transformer for line
clustering. After that, they apply other Transformer for cluster description.

The model described in [33], that builds a GAN completely free of convolu-
tions using only pure Transformer-based architecture with many changes and a
grid self-attention, is included on image generation. In addition, [48] uses sparse
attention and the Vaswani’s Transformer for generate images. One of the men-
tioned in text generation ([52]) is also carrying out image generation.

With respect to image captioning, in [44] both grid and region features are
used to achieve complementary information of them inside the same image. In
[11] they incorporate a priori knowledge in the attention with memory vectors
and a meshed connectivity between encoding and decoding modules. The pro-
posal in [31] introduces region and global features into the attention.

We distinguish those works that perform classification. With images: [16]
proposes a model with a Transformer encoder that previously patches the origi-
nal input image and applies a linear projection; [69] uses a set of reduction and
normal cells containing Transformers; and [8] uses a hybrid architecture between
CNN and Transformer for image matching. There are also models that perform
image segmentation as classification [23, 5, 30]. In [23], they treat volumetric im-
ages using Transformers, while the last two make use of hierarchical frame-level
Swin Transformer [43] to create two different models. Concerning classification
with video, [68] apply pre-processing and the Token Shift Transformer that in-
clude the Token Shift Module. Also, [3] uses a Transformer whose attention
factorizes the spatial and temporal dimensions of the input video.

Finally, in [43] they propose a general-purpose backbone for computer vision
and run experiments in image classification, object recognition and semantic
segmentation. This architecture has a shifted window based self-attention and
minor changes with respect to the original Transformer.

For image and video processing on Transformers, Table 2 shows that atten-
tion, normalization and FFN are the most modified elements. In the case of the
FFN, the use of the GELU function as an activation function stands out. So
many modifications on the original are needed to adapt these networks to the
use of pixels from an image and frames from a video instead of text sequences.

3.4 Audio

Transformers using audio spectrograms as input and/or output data accomplish
various applications such as Speech Enhancement (SE), Speech Recognition (SR),
Text-to-Speech (TTS), Speech Separation (SS) and Generation (Table 3).

Speech recognition is one of the most studied tasks when working with audio.
Three similar proposals are found in [15, 20, 47], which apply preprocessing to
data before the Transformer. Conformer [20] stands out by including CNN before
the FFN. A different approach is [10], which faces speech recognition in real time
with a Transducer network whose encoder contains a modified Conformer.
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Table 3. Taxonomy of Audio Processing Transformers

Application Attention PE Norm FFN Arch Ref

Generation MC Relative Original Original Lightweight [27]
SS Original Absolute Placement Original Recurrent [55]
TTS Original Absolute Original Original Original [38]
TTS Other Absolute Placement Original Lightweight [29]
TTS Original Removed Original AF (non-linear) Original [70]
SR Original Other Original Original Original [47]
SR Original Relative Placement AF (swish) Original [20]
SR Other Absolute Placement Original Original [15]
SR Original Relative Original AF (non-linear) Original [10]
SE Original Removed Original Removed Alternative [67]
SE Other Removed Original Original Alternative [34]
SE Original Removed Original Other Original [13]
SE Other Removed Placement AF (GELU) Lightweight [32]

Text-to-speech is solved in [29] by using Locality-Sensitive Hashing Attention
and Reversible Residual Network to reduce the memory used. Local LSTM before
attention to encode PE locally, directly and differently to original Transformer
is used in [70]. In [38] the vanilla Transformer is adapted to the specific task by
applying pre- and post-processing to the data.

In speech Enhancement, the proposal in [67] replaces FFN with 1D CNN and
uses local LSTM as in [70] to remove original PE. In [34] they use self-attention
with Gaussian-weighted and Short-Time Fourier Transform. The architecture
defined in [13] combines Intra and Inter Transformers, as well as other elements,
eliminates positional encoding and modifies FFN to use GRU, ReLU and linear
transformations. There is also a model [32] that reduces the computational cost
for this task by taking consecutive frames and treating them as a local window
that computes attention by using hierarchical frame-level Swin Transformer [43]
layers with an attention mechanism adapted to these frame windows.

In [55] they use a structure with two recurrently connected embedded Trans-
formers for speech separation. An architecture that reduces the intermediate
memory requirement by modifying attention and PE is described in [27]. It al-
lows the generation of one-minute musical compositions.

Table 3 shows that PE is the most modified element in Transformers that use
audio as input data, since the model must be adapted to work with spectrograms.
The most common is use relative PE or remove it. We also find modifications
in the placement of normalization, in the FFN activation function and, as the
most notable change, the use of adapted attention to work with audio signals.

3.5 Tabular

All proposals analysed use structured or tabular data to perform the same overall
task, Prediction, but in different domains (Table 4).

Two of these works perform molecular prediction [45, 7]. One of them run ex-
periments on a large collection of datasets that represent typical tasks in molecule
modelling, grouped like prediction: regression, binary classification, multiclass
classification, etc. The other one performs molecular property prediction. In [63]
a model that performs property prediction with polymers is defined.
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Table 4. Taxonomy of Structured Data Processing Transformers

Application Attention PE Norm FFN Arch Ref

Prediction Sparse Absolute Removed Original Original [40]
Prediction Original Absolute Original Original Original [53]
Prediction Other Removed Placement Original Original [45]
Prediction Original Absolute Original Original Original [7]
Prediction Sparse Absolute Original Original Lightweight [71]
Prediction Original Other Original Other Original [36]
Prediction Original Absolute Original Original Original [25]
Prediction Original Relative Original Original Original [63]

Other works [40, 53, 71] carry out times series prediction, including elements
for capturing temporal information. The study in [53] performs this job in med-
ical field by adding dense interpolation and masked self-attention mechanism.
Informer [71] is a lightweight Transformer for Long Sequence Time-Series Fore-
casting that uses its own sparse attention. In [40] a graph Transformer that
captures spatial and time dependent data with graph structure for forecasting
and prediction by applying sparsity to the whole architecture is defined.

Within prediction, some models make classification. The proposal in [36]
suggests a new architecture with Gaussian range encoding and two-tower struc-
ture that captures time and channel stream for Human Activity Recognition.
In [25] they create a Prior-Data Fitted Network with Transformers to perform
supervised classification for small datasets in less than a second.

For Transformers working with tabular data, changes in attention to adapt
it to this type of data are the most common, as shown in Table 4. However,
modifications to the other elements are also made in some cases.

3.6 Multimodal

Most of the proposals working with several types of data (Table 5) consider
linguistic and visual data. In addition, multitasking is one of the most studied
applications of multimodal data.

Table 5. Taxonomy of Multimodal Data Processing Transformers

Data Application Attention PE Norm FFN Arch Ref

Text-Image Multitask Original Absolute Original Original Original [37]
Text-Image Multitask Original Absolute Original Original Original [17]
Text-Image Multitask Original Absolute Original Original Original [57]
Text-Image Multitask Original Abs / Rel Original Original Original [50]
Text-Image Multitask Original Absolute Original Original Original [39]
Text-Image Multitask Original Absolute Original Original Original [54]
Text-Image Multitask Original Absolute Original Original Original [12]
Text-Image Classification Original Absolute Original Original Original [72]
Text-Image Classification Original Other Original Original Original [24]
Text-Image Generation Original Absolute Original Original Original [26]
Text-Image Generation Original Absolute Original Original Original [19]
Text-Video VC Original Absolute Original Original Original [28]
Text-Video Multitask Original Absolute Original Original Original [56]
Text-Audio Multitask Original Absolute Original Original Original [21]
Text-Audio Classification Sparse Absolute Original Original Original [9]
Text-Image-Audio Classification Original Absolute Original Original Original [22]
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Most studies that use a stream of linguistic and visual data use text and im-
ages. In many studies like [37, 17, 57, 50, 39, 54], models are multitasking. Most
of them slightly modify a BERT architecture [14], except for [39] which employs
Vaswani’s original Transformer [59]. In [12] they introduce a new task of Edited
Media Understanding that consists in answering questions on image manipula-
tion by multitasking, with classification and generation of responses. Other works
carry out only one task, like in [26, 19] where they generate responses to questions
asked about images and the text of the images. Other case is [24] that performs
different types of classification on user interfaces. Classification is carried out in
[72] for the skin lesion diagnosis using self-attention and guided-attention.

There are also articles dealing with linguistic and visual data flows through
text and video: using a BERT Large [56] for multitasking or two stream encoder,
cross-modal attention and a text only decoder for Video Captioning (VC) [28].

The processing of audio and text signals together incorporates the study
described in [21], whose model conducts Machine Translation and Speech Trans-
lation with a shared semantic memory network between encoder and decoder of
the original Transformer. In [9] a model for emotion recognition using cascaded
cross-attention block to fuse text and audio modalities is proposed.

A Transformer that works with language, acoustic, and vision features is de-
fined in [22], encoding all features separately and using a bimodal cross-attention
layer to exchange multimodal information for predicting whether the input is hu-
morous or not.

The most common in architectures dealing with multimodal data is to work
with different Transformers for the different types of data, and then to unify them
or pre-process the data in order to feed them together into one Transformer. As
shown in Table 5, except some modifications made to the PE, vanilla Transformer
is widely used.

4 Conclusion

In this survey, we review Transformers solving different tasks and group them
according to the type of data used as input. Most of the existing works use
text sequences to resolve multiple tasks, but Transformers are increasingly being
applied to image, video, audio, multimodal or tabular data processing, with
structured data being the least studied.

This review shows that text-based models typically use the original architec-
ture or BERT [14] without changes. Many improve the vanilla Transformer in
memory, computation time, etc. Those working with visual data such as image
or video commonly modify the attention to adapt to working with pixels (spatial
information) or with frames (spatio-temporal information). Furthermore, these
also modify normalization and often use GELU as an activation function in
FFN. For those working with spectrograms and audio signals, it is most usual
to change the PE to encode the time and frequency information of this type of
data and the attention to attend to it. In addition, they also make changes to
the normalization and the FFN activation function. Transformers working with
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tabular data mostly transform the attention to deal with this data. A unified
semantic space is used to work with multimodal data. Some of these models
apply one Transformer for each data type and unify the outputs into another.
Other works unify input data first and feed it into a Transformer. Except for
certain modifications, the vanilla Transformer or BERT is commonly used.
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