
mldr.resampling: Efficient Reference Implementations of Multilabel Resampling
Algorithms

Antonio J. Riveraa, Miguel A. Dávilaa, D. Elizondob, Maŕıa J. del Jesusa, Francisco Chartea,∗

aDepartment of Computer Science, Universidad de Jaén, 23071 Jaén, Spain
bDepartment of Computer Science and Informatics, De Montfort University (UK)

Abstract

Resampling algorithms are a useful approach to deal with imbalanced learning in multilabel scenarios. These methods
have to deal with singularities in the multilabel data, such as the occurrence of frequent and infrequent labels in the
same instance. Implementations of these methods are sometimes limited to the pseudocode provided by their authors
in a paper. This Original Software Publication presents mldr.resampling, a software package that provides reference
implementations for eleven multilabel resampling methods, with an emphasis on efficiency since these algorithms are
usually time-consuming.

Keywords: Multilabel learning, Imbalanced learning, Resampling algorithms, R software package

1. Introduction

MultiLabel Learning (MLL) [1] is one of the most com-
mon machine learning tasks today. It is based on the idea
that each data sample is associated with a certain subset
of labels. The full set of labels can be large, in many cases
even having more labels than input features. As a result,
it is common for some labels to occur in only a few sam-
ples, while others occur much more frequently. The label
imbalance [2] in MLL is almost always present, and it is a
serious obstacle to training good classifiers.

Class imbalance is a very well-known problem in tra-
ditional learning tasks such as binary and multiclass clas-
sification. Hundreds of articles [3, 4, 5], conference pa-
pers [6] and books [7] have been devoted to studying it
and proposing possible solutions. The most popular are
data resampling, cost-sensitive learning and mixtures of
these approaches [8, 9]. However, imbalanced learning in
the MLL field presents some specific aspects that make it
more difficult to deal with this problem.

Resampling algorithms, which can generate new sam-
ples associated with underrepresented labels or remove
those that are overrepresented, are a model-independent
solution to imbalance. Several such algorithms adapted
to multilabel datasets (MLD) have been proposed in re-
cent years [2, 10, 11, 12, 13, 14, 15]. However, reference
implementations are not yet available for all of them.

Several of these proposals rely heavily on finding near-
est neighbors between each data sample and all the others

∗Corresponding author.
Email addresses: arivera@ujaen.es (Antonio J. Rivera),

mdavila@ujaen.es (Miguel A. Dávila), elizondo@dmu.ac.uk (D.
Elizondo), mjjesus@ujaen.es (Maŕıa J. del Jesus),
fcharte@ujaen.es (Francisco Charte)

in the dataset. This is a computationally expensive task.
It will be desirable to take advantage of modern hardware
and speed up this work through parallelization. This will
make the time needed to resample some MLDs more af-
fordable for everyone.

The mldr.resampling software package is a new mem-
ber of themldr ecosystem, which also includes the mldr [16]
and the mldr.datasets [17] packages. All of them are
written in R language and are available from CRAN (Com-
prehensible R Archive Network), the official repository of
R software. The new package provides implementations of
a dozen of resampling algorithms for MLDs.

This document is structured as follows. Section 2 sets
the context from which the package originates. The soft-
ware itself, its structure, functionalities, and implementa-
tion details are described in Section 3. Several illustrative
usage examples are then provided in Section 4. Finally,
some conclusions are drawn in Section 5.

2. Background

Labeled data is used everyday to create models through
supervised algorithms. These usually assume that each
data pattern has only one label. However, this is not al-
ways the case. Beyond the scenarios of binary learning
—e.g. an email is considered as spam or it is not— and
multiclass learning —e.g. a flower is cataloged into one of
a set of species— there are others such as MLL [1]. This is
considered a non-standard learning situation [18], among
others such as multiview learning [19] and multiinstance
learning [20].

Let X1, . . . Xf be the domains of the f features in a
dataset and L be the set of distinct labels. The i-th data
pattern Ii in an MLD is defined as (1).

Preprint submitted to Journal December 5, 2023

Ii = (Xi, Yi) | Xi ∈ X1 ×X2 × · · · ×Xf , Yi ⊆ L. (1)

In MLL Yi can be any subset of L, instead of just one
label as in binary and multiclass learning. This also in-
cludes the empty set and the full set of labels. Given an
MLD D with instances xi, the goal of MLL is to find a
model such as the one in (2) that is able to predict Y ′

i , i.e.
the subset of labels applicable to each instance.

Y ′
i = f(xi), Y

′
i ∈ L. (2)

MLL has been applied is disparate fields, including
the processing of narratives related to aviation safety [21],
content-based retrieval of remote sensing images [22], pre-
dicting the toxicity effects of chemicals [23], and the auto-
matic tagging of posts in forums [24], among many others.
Several reviews of all these works and other MLL tech-
niques are available [25, 26, 27].

The data used for training a classifier is often imbal-
anced. As a result, the class labels that are assigned to
each instance are not equally represented. For binary
datasets [28] and to a lesser extent for multiclass ones [29],
this is a well studied problem. In order to know the level
of imbalance of the datasets, a measure called imbalance
ratio) (IR) [28] is used.

IR =
#samples majority class

#samples minority class
(3)

In a binary scenario, this ratio is computed as shown
in (3). The greater the proportion of instances associated
with the most common class as opposed to the minority
one, the higher the IR will be. When there are more than
two classes or labels, individual IRs are obtained pairwise,
then an average IR —usually noted as MeanIR— is calcu-
lated.

Traditionally, techniques such as data resampling, cost-
sensitive learning, and algorithm-specific adaptations have
been used to deal with imbalanced classification [30]. The
former have the advantage of being model independent,
i.e. they do not require changes to the model to improve
the learning process.

2.1. Highly imbalanced labels

Imbalance in the MLL domain presents some addi-
tional difficulties. While in the binary and multiclass sce-
narios having MeanIR > 10 is generally considered a high
level of imbalance, in MLL it is quite common. In fact,
only a few popular MLDs1 have a MeanIR ≤ 10, as can be
seen in Figure 1. Many of them have MeanIR ∈ [30, 100],
a few suffer from MeanIR ∈ [150, 500] and there are some
extreme cases with MeanIR > 1000.

1IR of most publicly available MLDs, among other common
metrics, are available in the Cometa multilabel dataset repository:
https://cometa.ujaen.es/datasets.

corel16k003
genbase

corel16k002
corel16k007

stackex_cooking
langlog

EukaryoteGO
EukaryotePseAAC

rcv1sub2
reutersk500

yahoo_science
rcv1sub1

stackex_chemistry
yahoo_entertainment

rcv1sub3
stackex_philosophy

rcv1sub5
delicious

enron
stackex_cs

stackex_chess
rcv1sub4

medical
yahoo_arts

nuswide_BoW
nuswide_VLAD

yahoo_education
yahoo_computers

corel5k
mediamill

yahoo_social
eurlexdc

yahoo_society
eurlexev

yahoo_reference
eurlexsm

yahoo_health
yahoo_business

0 250 500 750
MeanIR

Imbalance level of some MLDs

Figure 1: Mean imbalance ratio of MLDs obtained from the Cometa
dataset repository. Datasets having MeanIR below 35 or above 1000
have been excluded.

This means that there are rare labels that occur once
in several hundreds of the common ones. It is therefore
extremely difficult to learn a model that correctly han-
dles these low frequency labels. The problem can be ex-
acerbated when some MLL techniques, such as binary rel-
evance [31], are applied, since an independent model is
learned for each label against all the others.

2.2. Coupling of frequent and rare labels

Most of the popular solutions for dealing with data im-
balance when training models, derived from the standard
scenarios (binary and multiclass classification), cannot be
directly applied in the MLL case due to the unique nature
of the data samples. In the first case, it is possible to col-
lect all the samples associated with the minority class and
generate some synthetic instances, so that the imbalance
ratio is reduced. Similarly, some of the instances corre-
sponding to the majority class could be removed. Since
each data pattern corresponds to only one label, it is quite
easy to apply data resampling methods.

In MLDs, each instance has multiple labels associated
with it, so when a sample is removed or produced, all of
its labels are affected, not just the most common or rarest
label. In addition, it is quite normal in MLDs for the less
frequent labels to appear coupled to the majority ones [32]
in the same instances (see Figure 2). This casuistic is
measured by means of the SCUMBLE metric introduced
in [32]. As a consequence, an increase in the number of
samples containing rare labels also implies an increase of
the most common ones, and the IR remains unchanged.

2

Figure 2: This concurrence diagram shows how all the instances of
three minority labels, in the right side of the plot, always appear in
instances having one or more majority labels.

2.3. Computational cost

Although high imbalance levels and the coupling of rare
and frequent labels are the main obstacles to learning with
imbalanced MLDs, there is another fact to consider: the
huge computational cost imposed by some of the proposed
solutions.

First of all, MLDs sometimes have hundreds if not
thousands of labels. This means that there is no single
majority or minority label, but sets of them. Tuning the
frequency of all instances associated with these sets is more
costly than dealing with just one minority class as in bi-
nary or multiclass learning.

In addition, there are proposed algorithms for resam-
pling imbalanced MLDs that rely heavily on nearest neigh-
bor search. Computing the distances between all the sam-
ples in a dataset is already computationally expensive. In
the case of MLDs, the cost is higher because of the usually
large number of features —many MLDs come from text
document classification— and also the need to repeat the
search for each minority or majority label to be resampled.

2.4. Resampling algorithms

The methods proposed in the literature to deal with
imbalance in the MLL field are mostly based on data re-
sampling. Many of the existing MLL methods are built
as ensembles of simpler models. This is the case of [33,
34, 35, 36, 37] among many others. Introducing cost-
sensitive learning or other algorithmic modifications to im-
prove learning from imbalanced data is not an easy task.
On the contrary, a data resampling algorithm can be ap-
plied in a preprocessing step, regardless of the MLL model
used in the end.

Name Description Ref.

LPROS Random oversampling of labelsets [2]

MLROS Random oversampling of one minor-
ity label

[2]

MLRkNNOS Reverse-nearest neighborhood based
oversampling

[10]

MLSMOTE Synthetic oversampling based on
neighborhood similarity

[11]

MLSOL Oversampling based on local label
imbalance

[38]

LPRUS Random undersampling of labelsets [2]

MLRUS Random undersampling of one ma-
jority label

[2]

MLTL Tomek Link undersampling [13]

MLUL Undersampling based on local label
imbalance

[38]

MLeNN Heuristic undersampling of majority
labels

[14]

REMEDIAL Decoupling of minority and majority
labels

[32]

Table 1: Some of the most popular resampling algorithms for MLDs
and reference to the papers where they were introduced.

Table 1 lists most of the MLL resampling methods pro-
posed in the literature. There are five oversampling algo-
rithms, five more that perform undersampling, and one
that takes a different approach by decoupling instances
where rare and frequent labels coexist. The rightmost col-
umn gives the reference to the paper where each algorithm
was introduced. We have used the pseudo-code in these
papers as a guide to implementing each of them. Most of
them have been reviewed in a recent paper [39].

3. Software framework

This section describes the reasons for developing this
software package, the functionality it provides, and some
internals about how it works. Its dependencies, i.e. other
software packages on which it depends, are also listed. Fi-
nally, it is explained how the package can be extended to
include additional algorithms.

3.1. Rationale for mldr.resampling

Several MLL resampling algorithms have been intro-
duced in recent years. Some of these proposals are just a
description of the new algorithm’s operation. A handful
of them provide pseudocode that can be followed to im-
plement it. Only a few also supply an open, ready-to-use
implementation. In these cases, the implementation can
be in any of a number of languages, including Java, R,
MATLAB and Python.

3

Planning new experiments and comparisons with these
resampling algorithms is difficult because there is no com-
mon open source implementation for all of them. In ad-
dition, the few implementations that are available to eve-
ryone are written in a variety of languages, making them
difficult to run and compare. Finally, it should be noted
that existing implementations rarely include optimization,
so they tend to be slow in general. These are the main rea-
sons that led us to develop the software package presented
here.

We conducted a literature search to find those algo-
rithms for which pseudocode or an existing implementa-
tion was available. Having the pseudocode is a minimum
requirement, so the implementations in mldr.resampling

followed the algorithms’ authors’ guidelines exactly.
When it came to choosing a programming language to

implement these algorithms, we considered several aspects.
First, which language had the better MLL ecosystem for
working with multilabel data, as we did not want to rein-
vent the wheel. Second, the accessibility of the language
to non-programmers, as not all data scientists are experi-
enced programmers. Following the review in [40], it was
clear that R has a larger set of software packages avail-
able for MLL. In addition, R has a gentle learning curve
compared to other programming languages.

Some of the R packages related to MLL are mldr [16],
which provides the infrastructure needed to load and an-
alyze MLDs; mldr.datasets [17], with functions to im-
port, partition and export MLDs into different file formats;
mlr [41] offers some multilabel methods, while utiml [42]
provides various utilities for preprocessing, sampling and
analysis of multilabel data. Additional specific MLL al-
gorithms can be found in R packages such as NetDA [43],
MLPUGS [44] or CAMML [45], among others.

Although mldr.resampling is implemented in R, its
functionality is also available from other languages. There
are software interfaces such as rpy2 [46], RJava [47] and
RInside [48] that allow access to R software from Java,
Python and C++ respectively.

3.2. Software architecture

Our mldr.resampling package works with multilabel
datasets. The infrastructure for this is supplied by the
mldr package [16] as an R S3 class, also called mldr. S3 is
an object-oriented mechanism in the R language that relies
on generic functions. So most of the functions exported
by mldr.resampling take a mldr object as a parameter.
Users would load their MLDs using the facilities offered by
mldr and get a mldr object as a result. These objects are
later used as inputs to the methods in mldr.resampling.

Each one of the resampling algorithms shown in the
Table 1 is implemented in mldr.resampling as an inde-
pendent method. This allows the users to experiment with
the algorithm(s) they are interested in without any addi-
tional software layers.

As well as applying an algorithm to a MLD, the pack-
age also considers the possibility of running several meth-

ods to compare them. To achieve this goal, a function is
provided that automates the procedure of calling each of
the algorithms with the same MLD and the correct pa-
rameters.

3.3. Software functionalities

The main contributions of this new software package
are as follows:

• Reference implementations of eleven resampling al-
gorithms for MLD, with source available after in-
stalling the package.

• A unified interface that facilitates the application of
several of these algorithms to an MLD, automating
several of the steps required to compare them.

• Built-in optimizations to speed up the nearest neigh-
bor search through task parallelization and neighbor
caching.

These functionalities can be accessed in different ways
depending on the user’s needs. To apply one of the algo-
rithms to an MLD, the following methods are available.
For each one, the name of the method and its parame-
ters are given, together with a brief summary of how the
algorithm works.

• LPROS(mld, pc): This oversampling algorithm was
proposed in [2]. It applies the LP (Label Power-
set) transformation, then randomly selects samples
containing minority labelsets and clones them. The
method resamples the mld given as the first input
until a pc% increase in the number of samples is
reached.

• LPRUS(mld, pc): This undersampling algorithm
was proposed in [2]. It applies the LP transforma-
tion, then randomly selects samples containing ma-
jority labelsets and removes them. The method re-
samples the mld given as the first input until a pc%
decrease in the number of samples is reached.

• MLeNN(mld, thr, k): This undersampling algo-
rithm was proposed in [14]. It is based on the ENN
(Edited Nearest Neighbor) rule [49], according to
which if a sample has a different set of labels than its
neighbors, the sample is removed. The method re-
moves samples in the mld with majority labels whose
differences with their k nearest neighbors are above
the thr threshold.

• MLRkNNOS(mld, k): This oversampling algorithm
was proposed in [10]. It uses the concept of reverse
nearest neighbors, in order to create new instances
for each label. Several radial SVMs, one for each la-
bel, are then trained in order to predict each label of
the synthetic instances. The method resamples the
mld producing new instances based on the k reverse-
nearest neighbors.

4

• MLROS(mld, pc): This oversampling algorithm was
proposed in [2]. It searches for samples containing
minority labels and clones them by a random selec-
tion. The method resamples the mld by cloning ran-
dom instances in which minority labels appear up to
a point at which a pc% increase is reached.

• MLRUS(mld, pc): This undersampling algorithm
was proposed in [2]. It searches for samples contain-
ing majority labels and removes them by random se-
lection. The method resamples the mld given as first
input removing random instances in which majority
labels appear up to a point at wich a pc% decrease
is reached.

• MLSMOTE(mld, k): This oversampling algorithm was
proposed in [11]. It is based on the well-known
SMOTE algorithm [50], which creates synthetic sam-
ples by interpolating the feature values. The labels
of new samples are selected by ranking the active
labels in the neighborhood. The method generates
synthetic instances in which one or more minority la-
bels appear, producing characteristics from k nearest
neighbors.

• MLSOL(mld, pc, k): This algorithm, proposed in
[38], applies oversampling to difficult regions of in-
stance space to help classifiers distinguish labels.
The method resamples the mld creating new in-
stances on difficult regions of the instance space, us-
ing local information of k neighbors.

• MLTL(mld, thr): This undersampling algorithm
was proposed in [13]. Its goal is to identify and re-
move Tomek Links [51], i.e. majority instances with
a very different neighborhood. The method removes
instances in the mld whose differences are above the
thr threshold.

• MLUL(mld, pc, k): This undersampling algorithm
was proposed in [38]. It aims to identify instances
that contain majority labels and remove their neigh-
bors that are too different in terms of active labels.
The method resamples the mld removing instances
on difficult regions of the instance space, using local
information of k neighbors.

• REMEDIAL(mld): This oversampling algorithm was
proposed in [15]. It decouples common and uncom-
mon labels appearing in the same instance. It does
this by aggregating new instances into the dataset
and editing the labels in them. The method decou-
ples highly imbalanced labels occurring in the same
samples of the mld by splitting each into two in-
stances, one with the minority labels and another
with the majority labels.

It is quite common to be interested in trying different
resampling approaches on the same dataset. This allows

several algorithms to be compared and the best one cho-
sen for a particular MLD. Although the aforementioned
methods follow different strategies to create or remove data
samples, many of them rely on retrieving information from
their neighbors. Since most MLDs have hundreds or even
thousands of features, as well as a similar number of in-
stances, finding k nearest neighbors for every instance has
a huge impact on the time needed to run them.

The mldr.resampling package provides an additional
method —named resample(mld, algorithms)— capa-
ble of executing all methods specified by the algorithms

parameter on the same mld. This not only automates
work that would otherwise require multiple function calls,
but also improves the efficiency of running these methods
through a caching mechanism. Once the nearest neighbor
information is obtained, it is cached and passed as input to
the individual methods, so that this task does not consume
any time.

Another feature built into the package, accessible to
the user via the setParallel() function, is the ability to
distribute computations across all the cores in the system,
instead of using just one as usual. Limiting the number
of cores used by algorithms is also possible by calling the
setNumCores() function.

The current set of algorithms included in the package
is expected to grow in the coming period as new proposals
are made available with the minimum guidelines needed
to implement them. The structure of the code makes this
process easy.

3.4. Implementation details

All methods have been implemented in pure R, so that
the software package does not need to be compiled, and
the source code is available to any R practitioner interested
in digging into the code. Each method has been carefully
written according to the instructions given in the respec-
tive paper. Where the original source code was available,
the results of the new implementation were compared with
those of the original to ensure consistency.

Although having all the methods available in a lan-
guage like R makes them accessible to a large group of
researchers, R is certainly not the most efficient language
when it comes to execution speed. For this reason, the
mldr.resampling package has been written with efficiency
in mind through the following approaches:

• The garbage collection process of most dynamic lan-
guages can have a large impact on execution times.
Since most objects in R are immutable, growing cer-
tain data structures —such as vectors and matrices—
means allocating new blocks of memory, copying old
data, and freeing previously allocated memory. The
mldr.resampling package takes advantage of the
language’s vectorization facilities whenever possible,
avoiding loops to minimize the time spent on garbage
collection.

5

• Harnessing the power of today’s multi-core proces-
sors is essential to reduce execution time. How-
ever, few languages provide a standard way of do-
ing this so that it can be used on all operating sys-
tems. The mldr.resampling code is designed so
that some tasks can be run sequentially or in paral-
lel, depending on whether the parallel R package
is installed. By default, parallelization is not active,
so the parallel package is not required. If it is
available2, the user can enable parallelism simply by
calling the setParallel() function with the TRUE

value as a parameter.

• Many of the resampling methods in the package are
based on nearest neighbor search. In their original
implementation, this is the task that consumes most
of the running time. For numerical attributes, find-
ing the k nearest neighbors for a given data sam-
ple means computing distances, almost always Eu-
clidean, with all other instances in the MLD. If the
dataset contains nominal attributes, the distances
are even more expensive to obtain by VDM (Value
Difference Metric) [52]. All methods available in the
mldr.resampling package optionally take two addi-
tional parameters, neighbors and tableVDM, which
allow reusing these calculations. This caching method
is automatically used when the resample() function
is called to run more than one algorithm on the same
data.

3.5. How to extend mldr.resampling

Adding new algorithms to the mldr.resampling pack-
age is a straightforward process. The steps are shown be-
low:

1. Add a new R source file named ALGORITHM.R, where
ALGORITHM is the name of the algorithm to be imple-
mented.

2. In this file, define a function called ALGORITHM()

with the following parameters:

• D: A mldr object with the MLD to resample.

• P: The percentage to increase or decrease the
size of the original MLD.

• k: If the algorithm works with nearest neigh-
bors, this parameter sets the number of them
used.

• others: Any other specific parameters required
by the algorithm. For example, MLTL and
MLeNN take an additional argument specify-
ing the threshold to be applied.

The function can also take two optional parameters:
neighbors and tableVDM. These are only needed

2In latest versions of R this package is included in the base in-
stallation.

for algorithms that rely on computing nearest neigh-
bors and allow the mldr.resampling cache system
to speed up the search for distances.

3. Write the body of the ALGORITHM() function to im-
plement the new method. The following guidelines
should be observed:

• The utils.R module provides a set of utility
functions to compute euclidean and VDM func-
tions, get the neighbors of an instance, etc.

• Any code that can be parallelized should use the
mldr.resampling.env$.mldrApplyFun2 func-
tion instead of the usual lapply. This way, the
users can control whether they want to use par-
allelism or not.

4. Document the new function in standard Roxygen
format so that it can be integrated with R’s help
system.

5. Finally, the new function needs to be added to the
body of the executeAlgorithm() function, located
in the utils.R module, so that it is integrated into
the package and can be accessed like any other of the
existing methods.

These steps can be seen in the source code of each of
the methods already implemented in the package, which is
available to users so that they can use it as a guide when
writing their own algorithms. In addition, the documen-
tation included in the package details the work done by
each utility function.

4. Illustrative examples

The latest stable3 version of the mldr.resampling pack-
age is available on CRAN, so it can be installed like any
other R package by calling install.packages(), as shown
below. Once installed, the library() function will load
the package and display a message to the user about how
to enable parallel processing.

1 > install.packages("mldr.resampling")

2 > library(mldr.resampling)

3 Enter setParallel(TRUE) to enable parallel

computing

Some MLDs are needed to run the resampling algo-
rithms. As mldr.resampling has been installed, this im-
plies that the mldr package has also been installed. The
command data(package="mldr") will list the MLDs avail-
able in this package. Any other MLD can be fetched from
the file system or downloaded from the Cometa reposi-
tory using the functions provided by the mldr.datasets

package.
By means of the same data() function the emotions

MLD is loaded into memory and some measurements, such
as the number of instances, average IR and SCUMBLE,
are obtained:

3The development version of the package is hosted on GitHub:
https://github.com/madr0008/mldr.resampling.

6

1 > data(emotions , package="mldr")

2 > emotions$num.instances
3 [1] 593

4

5 > emotions$meanIR
6 [1] 1.478068

7

8 > emotions$scumble
9 [1] 0.01095238

This dataset is slightly imbalanced, with MeanIR =
1.4781, and the coupling of minority and majority labels
is also bearable, with SCUMBLE = 0.0109. Nevertheless,
it may benefit from the application of some resampling al-
gorithm. A first option could be the simple LPROS over-
sampling method:

1 > lpemotions <- LPROS(emotions , P=25)

2 > lpemotions$measures[c("num.instances", "meanIR"

, "scumble")]

3 $num.instances
4 [1] 741

5

6 $meanIR
7 [1] 1.355174

8

9 $scumble
10 [1] 0.007740464

The call to the LPROS() function returns a new mldr

object representing the MLD after resampling. As can be
seen from the measurements, this version of the dataset
has a few more samples and both MeanIR and SCUMBLE
have decreased, which is positive.

Since all functions corresponding to a resampling al-
gorithm return a mldr object as a result, chaining several
methods is quite easy. For example, LPROS creates new
samples based on minority label combinations rather than
individual labels. A dataset with a high degree of coupling
between minority and majority labels would hardly benefit
from this algorithm. However, label decoupling can be ap-
plied before LPROS by using the REMEDIAL algorithm,
as shown below.

1 > lpemotions <- LPROS(REMEDIAL(emotions), P=25)

2 > lpemotions$measures[c("num.instances", "meanIR"

, "scumble")]

3 $num.instances
4 [1] 999

5

6 $meanIR
7 [1] 1.18863

8

9 $scumble
10 [1] 0.00224451

Both the average imbalance ratio and the coupling in-
dex provided by the SCUMBLE metric are much better
than those achieved by LPROS alone.

By default, the functions in mldr.resampling do not
use parallelization. Because of this, certain algorithms —
those that compute nearest neighbors — will take a con-
siderable amount of time. A progress bar is used to tell
the user how the process is going, as well as an estimate
of the time remaining. Once the method is complete, as

in the following example, the resulting MLD is available
as with any other function.

1 > smemotions <- MLSMOTE(emotions , k=5)

2 |++++++++++++++++++++++++++++++++++++| 100%

elapsed =15m 02s

3 > smemotions$measures[c("num.instances", "meanIR"

, "scumble")]

4 $num.instances
5 [1] 1247

6

7 $meanIR
8 [1] 1.298585

9

10 $scumble
11 [1] 0.004986872

Distributing the workload across all the processing cores
of the user’s machine is a one-step operation, calling the
setParallel(TRUE) function. This function checks if the
required parallel package is installed, and notifies the
user if it is not. Once parallel processing is enabled, any
method execution will take advantage of this capability. In
the example below, the same MLSMOTE algorithms took
about a quarter of the time to run.

1 > setParallel(TRUE)

2 # Parallel computing enabled on all 16 available

cores. Use function setNumCores if you wish

to modify it

3 > smemotions <- MLSMOTE(emotions , k=5) # 4m 11s

4 ...

Although calling the functions associated with individ-
ual methods allows the user to test any of them, a planned
experiment will usually involve running several of them.
This work can be automated using the resample() func-
tion, as shown in the example below. In this case, four
resampling algorithms are applied to the same MLD. As
can be seen from the output of the function, the first step is
to compute several structures that act as a nearest neigh-
bor cache. In this way, the overall running time will be
shorter than if each algorithm searched for its own set of
neighbors.

1 > resample(emotions ,

2 c("MLROS", "MLRUS", "MLeNN", "MLSOL"),

3 outputDirectory="~/datasets")

4 # Calculating structures for dataset musicout ,

if necessary. Once this is done , algorithms

will be applied faster

5 # Calculating VDM table for dataset musicout

6 # Time taken (in seconds): 0.0046391487121582

7 # Calculating neighbors structure for dataset

musicout . Once this is done , algorithms will

be applied faster

8 # Time taken (in seconds): 485.649948835373

9 # Running MLROS on musicout with P = 25

10 # Time taken (in seconds): 0.0200722217559814

11 # Running MLRUS on musicout with P = 25

12 # Time taken (in seconds): 0.0121262073516846

13 # Running MLeNN on musicout with TH = 0.5 and k =

3

14 # Time taken (in seconds): 0.33689546585083

15 # Running MLSOL on musicout with P = 25 and k = 3

16 # Part 1/3: Neighbors were already calculated.

That just saved us a lot of time!

17 # Part 2/3: Calculating auxiliary structures

7

18 # Part 3/3: Generating new instances

19 # Time taken (in seconds): 3.47672557830811

20 # End of execution. Generated MLDs stored under

directory ~/datasets

21 # algorithm time

22 # 1 MLROS 0.0200722217559814

23 # 2 MLRUS 0.0121262073516846

24 # 3 MLeNN 485.991483449936

25 # 4 MLSOL 489.131313562393

Since multiple versions of the dataset are created, one
for each algorithm, the resample() function will store
them in the file system rather than in memory. By default
it will use a temporary folder, but the user can specify any
path with the outputDirectory parameter. The name of
the generated files (see Figure 3) will be a combination of
the original MLD, the algorithm and the parameters to
run it.

Figure 3: Files produced by the resample() function after running
four resampling algorithms over one dataset.

Once all the processed datasets are available, the func-
tionality provided by the mldr package [16] allows the user
to analyze how each algorithm has affected the dataset
through a series of metrics and plots.

Based on these examples, we did an experiment to test
all the algorithms included in the mldr.resampling pack-
age. The emotions dataset is one of the best known in the
literature, so we chose it. Table 2 shows the basic imbal-
ance and coupling metrics before and after applying each
of the methods. By analyzing these results, a decision can
be made as to which algorithm is more appropriate for this
MLD.

5. Conclusions

This paper has presented a novel software package,
mldr.resampling for the R language, which for the first
time provides the user with reference implementations of
the most popular multilabel resampling algorithms.

Imbalance is a common problem in multilabel datasets,
hence the usefulness of resampling methods as a model-
independent approach to overcome this obstacle. How-
ever, there are no public implementations of many of the
published algorithms. Our mldr.resampling package fills
this gap by providing consistent implementations of eleven
of these methods. The package is publicly available in
CRAN, the official R repository, and users get immediate
access to the source code. In addition, the package is de-
signed for efficiency, minimizing computation by caching
nearest neighbor information and parallelizing data pro-
cessing.

Future plans include the addition of new resampling
methods as they become available and with sufficient detail

Method Instances MeanIR SCUMBLE

None 593 1.478068 0.010952

LPROS 741 1.355174 0.007740

MLROS 745 1.400893 0.007265

MLRkNNOS 1935 1.229133 0.075575

MLSMOTE 1247 1.298585 0.004987

MLSOL 740 1.420507 0.009091

LPRUS 450 1.408794 0.010180

MLRUS 511 1.439544 0.010126

MLTL 592 1.474701 0.010870

MLUL 445 1.503003 0.011839

MLeNN 592 1.474701 0.010870

REMEDIAL 815 1.478068 0.000562

Table 2: Imbalance and label coupling metrics for the emotions

dataset after applying the methods provided in the mldr.resampling
package. Default values were used for all algorithms.

to allow their implementation, extending the functionality
already available in the mldr family of packages.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgments

The research carried out in this study is part of the
project “ToSmartEADs: Towards intelligent, explainable
and precise extraction of knowledge in complex problems
of Data Science” financed by the Ministry of Science, Inno-
vation and Universities with code PID2019-107793GB-I00
/ AEI / 10.13039 / 501100011033.

Required Metadata

Current executable software version

See Table 3.

Current code version

See Table 4.

8

Nr. (executable) Software metadata
description

Please fill in this col-
umn

S1 Current software version 0.2.1
S2 Permanent link to executables of this

version
https://github.

com/madr0008/mldr.

resampling

S3 Legal Software License MIT (≥ 2)
S4 Computing platform/Operating Sys-

tem
Linux, OS X, Microsoft
Windows

S5 Installation requirements & depen-
dencies

data.table, e1071, mldr,
pbapply, vecsets

S6 If available, link to user manual -
if formally published include a refer-
ence to the publication in the refer-
ence list

https://cran.

r-project.org/

web/packages/mldr.

resampling/mldr.

resampling.pdf

S7 Support email for questions mdavila@ujaen.es

Table 3: Software metadata

Nr. Code metadata description Please fill in this col-
umn

C1 Current code version 0.2.1
C2 Permanent link to code/repository

used of this code version
https://github.

com/madr0008/mldr.

resampling

C3 Legal Code License MIT (≥ 2)
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
R (≥ 3.3.0)

C6 Compilation requirements, operating
environments & dependencies

data.table, e1071, mldr,
pbapply, vecsets

C7 If available Link to developer docu-
mentation/manual

https://cran.

r-project.org/

web/packages/mldr.

resampling/mldr.

resampling.pdf

C8 Support email for questions mdavila@ujaen.es

Table 4: Code metadata (mandatory)

References

[1] F. Herrera, F. Charte, A. J. Rivera, M. J. del Jesus, Multil-
abel Classification. Problem analysis, metrics and techniques,
Springer, 2016. doi:10.1007/978-3-319-41111-8.

[2] F. Charte, A. J. Rivera, M. J. del Jesus, F. Herrera, Addressing
imbalance in multilabel classification: Measures and random
resampling algorithms, Neurocomputing 163 (0) (2015) 3–16.
doi:10.1016/j.neucom.2014.08.091.

[3] A. Luque, A. Carrasco, A. Mart́ın, A. de las Heras, The impact
of class imbalance in classification performance metrics based
on the binary confusion matrix, Pattern Recognition 91 (2019)
216–231. doi:10.1016/j.patcog.2019.02.023.

[4] Y. Sun, A. K. Wong, M. S. Kamel, Classification of im-
balanced data: A review, International journal of pattern
recognition and artificial intelligence 23 (04) (2009) 687–719.
doi:10.1142/S0218001409007326.

[5] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue,
G. Bing, Learning from class-imbalanced data: Review of meth-
ods and applications, Expert Systems with Applications 73
(2017) 220–239. doi:10.1016/j.eswa.2016.12.035.

[6] A. Menon, H. Narasimhan, S. Agarwal, S. Chawla, On the sta-
tistical consistency of algorithms for binary classification un-
der class imbalance, in: S. Dasgupta, D. McAllester (Eds.),
Proceedings of the 30th International Conference on Machine
Learning, Vol. 28 of Proceedings of Machine Learning Research,
PMLR, Atlanta, Georgia, USA, 2013, pp. 603–611.

[7] H. He, Y. Ma, Imbalanced Learning: Foundations,
Algorithms, and Applications, Wiley-IEEE, 2013.
doi:10.1002/9781118646106.

[8] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al., Handling im-
balanced datasets: A review, GESTS international transactions
on computer science and engineering 30 (1) (2006) 25–36.

[9] R. Mohammed, J. Rawashdeh, M. Abdullah, Machine
learning with oversampling and undersampling tech-
niques: overview study and experimental results, in: 2020
11th international conference on information and com-
munication systems (ICICS), IEEE, 2020, pp. 243–248.
doi:10.1109/ICICS49469.2020.239556.

[10] P. Sadhukhan, S. Palit, Reverse-nearest neighbor-
hood based oversampling for imbalanced, multi-label
datasets, Pattern Recognition Letters 125 (2019) 813–820.
doi:10.1016/j.patrec.2019.08.009.

[11] F. Charte, A. J. Rivera, M. J. del Jesus, F. Her-
rera, MLSMOTE: Approaching imbalanced multilabel learning
through synthetic instance generation, Knowledge-Based Sys-
tems 89 (2015) 385–397. doi:10.1016/j.knosys.2015.07.019.

[12] B. Liu, K. Blekas, G. Tsoumakas, Multi-label sampling based on
local label imbalance, Pattern Recognition 122 (2022) 108294.
doi:10.1016/j.patcog.2021.108294.

[13] R. M. Pereira, Y. M. Costa, C. N. Silla Jr, MLTL: A
multi-label approach for the Tomek Link undersam-
pling algorithm, Neurocomputing 383 (2020) 95–105.
doi:10.1016/j.neucom.2019.11.076.

[14] F. Charte, A. Rivera, M. del Jesus, F. Herrera, MLeNN: A First
Approach to Heuristic Multilabel Undersampling, in: Proc.
15th Int. Conf. Intelligent Data Engineering and Automated
Learning, Salamanca, Spain, IDEAL’14, Vol. 8669 of LNCS,
2014, pp. 1–9. doi:10.1007/978-3-319-10840-7 1.

[15] F. Charte, A. Rivera, M. J. del Jesus, F. Herrera, Resampling
Multilabel Datasets by Decoupling Highly Imbalanced Labels,
in: Hybrid Artificial Intelligent Systems, Vol. 9121 of Lecture
Notes in Computer Science, Springer International Publishing,
2015, pp. 489–501. doi:10.1007/978-3-319-19644-2 41.

[16] F. Charte, D. Charte, Working with multilabel datasets in
R: The mldr package, The R Journal 7 (2) (2015) 149–162.
doi:10.32614/RJ-2015-02.

[17] F. Charte, A. J. Rivera, D. Charte, M. J. del Je-
sus, F. Herrera, Tips, guidelines and tools for managing
multi-label datasets: The mldr.datasets r package and the
cometa data repository, Neurocomputing 289 (2018) 68–85.
doi:10.1016/j.neucom.2018.02.011.

[18] D. Charte, F. Charte, S. Garćıa, F. Herrera, A snapshot
on nonstandard supervised learning problems: taxonomy, re-
lationships, problem transformations and algorithm adapta-
tions, Progress in Artificial Intelligence 8 (1) (2019) 1–14.
doi:10.1007/s13748-018-00167-7.

[19] S. Sun, A survey of multi-view machine learning, Neu-
ral Computing and Applications 23 (7-8) (2013) 2031–2038.
doi:10.1007/s00521-013-1362-6.

[20] Z. H. Zhou, Multi-instance learning: A survey, Department of
Computer Science & Technology, Nanjing University, Tech. Rep
(2004).

[21] S. D. Robinson, Multi-label classification of contributing causal
factors in self-reported safety narratives, Safety 4 (2018) 30.
doi:10.3390/safety4030030.

[22] O. E. Dai, B. Demir, B. Sankur, L. Bruzzone, A novel sys-
tem for content-based retrieval of single and multi-label high-
dimensional remote sensing images, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing (99)
(2018) 1–18. doi:10.1109/JSTARS.2018.2832985.

[23] T. Liu, L. Chen, X. Pan, An integrated multi-label
classifier with chemical-chemical interactions for predic-
tion of chemical toxicity effects, Combinatorial chem-
istry & high throughput screening 21 (6) (2018) 403–410.
doi:10.2174/1386207321666180601075428.

[24] F. Charte, A. J. Rivera, M. J. del Jesus, F. Herrera, QUINTA:
A question tagging assistant to improve the answering ratio in

9

electronic forums, in: EUROCON 2015 - International Confer-
ence on Computer as a Tool (EUROCON), IEEE, 2015, pp. 1–6.
doi:10.1109/EUROCON.2015.7313677.

[25] M. Zhang, Z. Zhou, A review on multi-label learning algorithms,
IEEE Transactions on Knowledge and Data Engineering 26 (8)
(2014) 1819–1837. doi:10.1109/TKDE.2013.39.

[26] E. Gibaja, S. Ventura, Multi-label learning: a review of the
state of the art and ongoing research, Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 4 (6) (2014)
411–444. doi:10.1002/widm.1139.

[27] E. Gibaja, S. Ventura, A tutorial on multilabel learn-
ing, ACM Computing Surveys 47 (3) (2015) 52:1–52:38.
doi:10.1145/2716262.

[28] N. Japkowicz, S. Stephen, The class imbalance problem: A sys-
tematic study, Intelligent Data Analysis 6 (5) (2002) 429–449.
doi:10.3233/IDA-2002-6504.

[29] A. Fernández, V. López, M. Galar, M. J. del Jesus, F. Her-
rera, Analysing the classification of imbalanced data-sets
with multiple classes: Binarization techniques and ad-hoc
approaches, Knowl. Based Systems 42 (2013) 97 – 110.
doi:10.1016/j.knosys.2013.01.018.

[30] V. López, A. Fernández, S. Garćıa, V. Palade, F. Herrera, An in-
sight into classification with imbalanced data: Empirical results
and current trends on using data intrinsic characteristics, Inf.
Sciences 250 (2013) 113 – 141. doi:10.1016/j.ins.2013.07.007.

[31] S. Godbole, S. Sarawagi, Discriminative Methods for Multi-
Labeled Classification, in: Advances in Knowledge Discovery
and Data Mining, Vol. 3056, 2004, pp. 22–30. doi:10.1007/978-
3-540-24775-3 5.

[32] F. Charte, A. J. Rivera, M. J. del Jesus, F. Her-
rera, Dealing with difficult minority labels in imbalanced
mutilabel data sets, Neurocomputing 326 (2019) 39–53.
doi:10.1016/j.neucom.2016.08.158.

[33] G. Tsoumakas, I. Vlahavas, Random k-labelsets: An ensemble
method for multilabel classification, in: Proc. 18th European
Conf. on Machine Learning, Warsaw, Poland, ECML’07, Vol.
4701, 2007, pp. 406–417. doi:10.1007/978-3-540-74958-5 38.

[34] G. Tsoumakas, I. Katakis, I. Vlahavas, Effective and Efficient
Multilabel Classification in Domains with Large Number of La-
bels, in: Proc. ECML/PKDD Workshop on Mining Multidi-
mensional Data, Antwerp, Belgium, MMD’08, 2008, pp. 30–44.

[35] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains
for multi-label classification, Machine Learning 85 (2011) 333–
359. doi:10.1007/s10994-011-5256-5.

[36] J. Read, B. Pfahringer, G. Holmes, Multi-label classification
using ensembles of pruned sets, in: 8th International Conference
on Data Mining, 2008. ICDM’08, IEEE, 2008, pp. 995–1000.
doi:10.1109/ICDM.2008.74.

[37] J. Read, L. Martino, P. M. Olmos, D. Luengo, Scalable
multi-output label prediction: From classifier chains to clas-
sifier trellises, Pattern Recognition 48 (6) (2015) 2096 – 2109.
doi:10.1016/j.patcog.2015.01.004.

[38] B. Liu, G. Tsoumakas, Synthetic oversampling of multi-label
data based on local label distribution, in: Machine Learning
and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2019, Würzburg, Germany, September 16–20,
2019, Proceedings, Part II, Springer, 2020, pp. 180–193.

[39] A. N. Tarekegn, M. Giacobini, K. Michalak, A re-
view of methods for imbalanced multi-label clas-
sification, Pattern Recognition 118 (2021) 107965.
doi:https://doi.org/10.1016/j.patcog.2021.107965.

[40] F. Charte, A comprehensive and didactic review on multilabel
learning software tools, IEEE Access 8 (2020) 50330–50354.
doi:10.1109/ACCESS.2020.2979787.

[41] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter,
E. Studerus, G. Casalicchio, Z. M. Jones, mlr: Machine learning
in r, Journal of Machine Learning Research 17 (170) (2016) 1–5.

[42] A. Rivolli, A. C. P. L. F. de Carvalho, The utiml Package:
Multi-label Classification in R, The R Journal 10 (2) (2018)
24–37. doi:10.32614/RJ-2018-041.
URL https://doi.org/10.32614/RJ-2018-041

[43] L.-P. Chen, et al., Netda: An r package for network-based
discriminant analysis subject to multilabel classes, Journal of
Probability and Statistics 2022 (2022).

[44] M. Popov, Multi-label Classification with MLPUGS, Compre-
hensive R Network Archive (2016).
URL https://github.com/bearloga/MLPUGS

[45] C. Schiebout, H. R. Frost, CAMML: multi-label immune cell-
typing and stemness analysis for single-cell RNA-sequencing, in:
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2022, World
Scientific, 2021, pp. 199–210.

[46] L. Gautier, rpy2 3.5.13 - R in Python (2023).
URL https://rpy2.github.io

[47] S. Urbanek, rJava: Low-level R to Java interface (2021).
URL https://cran.r-project.org/web/packages/rJava/

index.html

[48] D. Eddelbuettel, Rinside, in: Seamless R and C++ Integration
with Rcpp, Springer New York, New York, NY, 2013, pp. 127–
137. doi:10.1007/978-1-4614-6868-4 9.

[49] D. L. Wilson, Asymptotic properties of nearest neighbor rules
using edited data, IEEE Transactions on Systems, Man, and Cy-
bernetics (3) (1972) 408–421. doi:10.1109/TSMC.1972.4309137.

[50] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer,
SMOTE: Synthetic minority over-sampling technique, J. Arti-
ficial Intelligence Res. 16 (2002) 321–357. doi:10.1613/jair.953.

[51] I. Tomek, Two modifications of CNN, IEEE Transactions
On Systems, Man and Cybernetics 6 (11) (1976) 769–772.
doi:10.1109/TSMC.1976.4309452.

[52] C. Stanfill, D. Waltz, Toward memory-based reasoning,
Communications of the ACM 29 (12) (1986) 1213–1228.
doi:10.1145/7902.7906.

10

