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Reducing Data Complexity using Autoencoders
with Class-informed Loss Functions
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Abstract—Available data in machine learning applications is becoming increasingly complex, due to higher dimensionality and difficult

classes. There exists a wide variety of approaches to measuring complexity of labeled data, according to class overlap, separability or

boundary shapes, as well as group morphology. Many techniques can transform the data in order to find better features, but few focus

on specifically reducing data complexity. Most data transformation methods mainly treat the dimensionality aspect, leaving aside the

available information within class labels which can be useful when classes are somehow complex.

This paper proposes an autoencoder-based approach to complexity reduction, using class labels in order to inform the loss function

about the adequacy of the generated variables. This leads to three different new feature learners, Scorer, Skaler and Slicer. They are

based on Fisher’s discriminant ratio, the Kullback-Leibler divergence and least-squares support vector machines, respectively. They

can be applied as a preprocessing stage for a binary classification problem. A thorough experimentation across a collection of 27

datasets and a range of complexity and classification metrics shows that class-informed autoencoders perform better than 4 other

popular unsupervised feature extraction techniques, especially when the final objective is using the data for a classification task.

✦

1 INTRODUCTION

A classical obstacle in the field of data science is obtain-
ing data of sufficient quality in order to extract the desired
knowledge. The process of learning a model can be notably
hindered by data presenting very common traits such as
noise [1], outliers [2], high dimensionality [3] or complex
class boundaries [4]. This results in long periods of time
spent cleaning and preprocessing data [5] before the actual
data mining step can even begin. Although data cleaning
techniques can be of good use in order to identify and filter
out noise, outliers and missing data, other aspects can be
trickier to solve.

Many real world situations can be modeled as super-
vised classification problems, those where each instance
belongs to one of several classes, and the objective is to
learn from the observed data from each class in order
to automatically assign the corresponding class labels to
new, unobserved instances. Some examples of classification
problems are text categorization [6], spam filtering [7], object
recognition in images [8] and automatic interpretation of
medical data to facilitate diagnostics [9]. Many of these
problems correspond to the simplest case, binary classifi-
cation, where there are only two categories.

One of the type of issues that is very commonly
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overlooked in classification problems is the complexity of
data [4], [10]. Consider a clean dataset with no presence of
errors or abnormalities. There can still be aspects related to
the geometrical shapes and overlap among classes which
can hinder the performance of a learning technique. For
example, there could be no separability between classes, or
even regions of the feature space with a mix of instances
from different classes. In cases where separability is achiev-
able, boundaries can present complex shapes that can be
difficult for a parameterized model to fit. Figure 1 illustrates
some of these cases, more concretely, one where the features
do not allow to separate the classes, and another where
class boundaries are difficult to model due to there being
several small groups from one class, sometimes known as
small disjuncts [11], within a group of the other.

An additional hindrance that frequently occurs in data
mining scenarios is associated to the representation of
instances, to the features themselves [12]. These can be
typically seen as observed outcomes of underlying factors
that cause them and, as a result, are not always the ideal
representation of the data. This can depend on the objective
task and the learning method to be used. For example, a
pixel-based representation for images can be ideal for a
convolutional neural network to perform classification, but
may be difficult for a lazy learning method to process.

When data have some kind of complexity, it can affect
the performance of machine learning methods and these
are usually not able to overcome the issue by themselves.
Instead, a preprocessing step can transform data aiming to
find a better representation which makes it easier to cate-
gorize points. Operating with features for this purpose is a
task known as feature extraction or feature learning. There
exists a wide variety of approaches to feature extraction
[13], including linear transformations, manifold learning
and neural network-based models. However, very few of
them take class complexity into account and, as a result,
extracting quality features with a specific strategy to reduce
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Fig. 1. Different situations relating to class complexity. The graph on the left shows separable classes, the middle one is an example where classes
are not separable and the one on the right shows separable classes with complex boundaries (small disjuncts).

this complexity is still an important challenge.
In particular, autoencoders (AEs) [14] are neural net-

works specifically designed to extract features from the
data. These are typically trained to reconstruct the input at
its output, feeding the data through several layers which
impose some kind of restriction or bottleneck in order to
find more appropriate representations along the way. AEs
can also be easily restricted or adapted in order to promote
certain kinds of transformations and encodings, for exam-
ple, finding sparse variables which only take high values
for a small number of instances [15].

This work makes use of the well-known technique for
regularizing the behavior of an AE, applied in this case
to achieve class complexity reduction. Aiming to transform
features onto a more useful space with special attention to
class complexity, three concrete models that use different
criteria are proposed. The bases for these are: Fisher’s dis-
criminant ratio, the Kullback-Leibler divergence (KLD) and
least-squares support vector machines (LSSVMs). The new
models have been tested against well-established feature
extraction methods within a binary classification pipeline.

In summary, the main contributions of this paper are the
following:

• New AE-based models able to learn from input fea-
tures as well as binary class labels, specifically the
following three variants:

– Scorer, a model which enables separability
among classes by means of the Fisher’s dis-
criminant ratio.

– Skaler, a model that receives feedback from
the KLD and can thus provide features where
positive and negative instances belong to very
different distributions.

– Slicer, an extended AE using a LSSVM in or-
der to simultaneously evaluate a simple linear
classifier and assess the adequacy of the new
features for classification.

• A thorough experimentation across 27 cases and 11
evaluation measures, focusing on different complex-
ity rates and classification performance, and against
4 other well-known feature extraction methods.

• A comparison between the most interpretable com-
plexity metrics and several evaluation metrics for

classifiers, revealing which of the complexity metrics
are better predictors of classification performance.

As an important conclusion after the experimental anal-
ysis of the newly proposed models, we must point out
that they can be trained to generate better features for
the purposes of classification than other popular feature
extraction methods.

The rest of this paper is organized as follows. Section 2
describes the current state with respect to available com-
plexity measures and techniques to overcome complexity in
data. Next, Section 3 introduces our proposals and provides
all the details about their inner workings. Section 4 explains
the details of the experimentation process, while Section 5
discusses the results. Lastly, conclusions and final comments
are provided in Section 6.

2 STATE OF THE ART IN COMPLEXITY REDUCTION

A dataset can present many different problems that may
drive it to be considered difficult or complex to classify.
Initially, a possible measure of complexity could be the error
rate of the classifier itself. However, the objective of this
work is identifying difficult datasets to treat them before
learning a classifier. For this reason, we rely on other metrics
which aim to characterize the complexity of supervised
problems.

2.1 Sources of difficulty

Ho and Basu [16] identify three possible sources of dif-
ficulty: (1) class ambiguity, (2) boundary complexity and
(3) sample sparsity and feature space dimensionality. The
first applies to the circumstances where classes cannot be
distinguished using the given features, either because they
provide insufficient knowledge about the problem or be-
cause the classes are not well defined. The second source
refers to the situation where classes are interleaved or not
easily separable. In these cases, the complexity can be mea-
sured attending to class overlap and class separability as
well as geometry, topology and density of manifolds. The
last category covers issues with the structure of the sample,
whether it is complete enough and the amount of variables
the classifier needs to work with.
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2.2 Complexity measures

In order to quantitatively assess how complex a dataset is,
a wide variety of complexity metrics have been proposed
over the years [4], [10]. The following sections briefly de-
scribe the most relevant approaches to measure complexity,
paying special attention to the metrics that will be applied
throughout the experimentation. Each metric is abbreviated
according to the original nomenclature in [4] and [10].

2.2.1 Class overlap

Geometrical complexity in a dataset can be characterized
in several ways. One approach is to measure the overlap
in feature values among different classes. Each feature can
be assessed as to how much it contributes to distinguishing
the classes. In this case, measures usually focus on binary
problems. The following measures follow this approach:

Maximum Fisher’s discriminant ratio (F1): Fisher’s
discriminant ratio is a measure of class overlap, based on
the simplest statistics for a distribution, mean and standard
deviation. Higher values of this metric mean lower levels
of overlap. The maximum over all features is taken as a
measure of the class separation in a dataset.

Maximum feature efficiency (F3): Feature efficiency
is calculated as the proportion of examples that can be
unambiguously classified by a simple threshold, that is, they
lie outside an overlapping region. This rate gives an idea of
the usefulness of a given feature when attempting to classify
every instance in the dataset. The maximum of this ratio
across all features is known as F3.

2.2.2 Class separability and nonlinearity

Instead of measuring the importance of the overlapping
regions in features, an alternative approach is to look for
complexity of the boundary separating classes, that is, its
ability to actually isolate both classes and its nonlinearity.
Several measures have been developed regarding the shape
and separation degree of classes.

Linear classifier error (L2): Linear separability of
classes is the core of a branch of classification methods,
support vector machines (SVM) [17]. In its simplest form,
a SVM is a binary classifier that attempts to find the hyper-
plane which best separates both classes. Its training error
can be used as a metric to characterize the separability (or
lack thereof) of a dataset.

Linear classifier nonlinearity (L3): Describing the
shape of the regions occupied by each class can also con-
tribute to learning about the complexity of the data. In
particular, this measure tackles nonlinearity, i.e. the smooth-
ness of the decision boundary of a classifier, which can be
detected by interpolating pairs of points of the same class to
extract a test set and computing the classification error for
this new set.

2.2.3 Neighborhoods and morphology

The previous traditional measures for data complexity come
from a statistical or geometrical point of view. Other metrics
look at how instances are located around each other, so they
study local behavior instead of global properties.

1-NN classifier error (N3): Similarly to the L1-L3
measures, which make use of a simple classifier in order
to measure complexity, this metric performs a leave-one-out
validation of a nearest neighbor classifier, that is, it checks
the class of every instance according to the nearest one, and
measures complexity as the error rate obtained.

Recently, some new metrics have been proposed that
attempt to describe data complexity from the perspective
of data morphology [18]. These are based on the Pure Class
Cover Catch Digraph (P-CCCD) classification method [19].

P-CCCD creates a collection of balls that cover the fea-
ture space so that each ball only contains points from the
same class. The process consists in choosing a ball so that
it is centered in a point of the target class and is the largest
possible ball that does not any point of the other class. This
is repeated until all points of that class are in at least one
ball, producing a cover which is not necessarily optimal but
is a good approximation.

Morphology-based complexity metrics are inspired by
this algorithm in the sense that they look for a ball cover
of all points where balls only contain points from one
class, and then perform some computations according to the
number of balls created. The main metrics are as follows:

Total number of balls (ONBtot): This measure counts
the total number of balls required to produce the cover. If
b+ balls are needed to cover all positive instances and b−

are necessary for the negative points, it is calculated as

ONBtot =
b+ + b−

n
. (1)

Average number of balls (ONBavg): It averages the
amount of balls used to cover the points of each class. In a
binary classification environment, the definition would just
be the sum of the balls-to-points ratios, divided by 2:

ONBtot =
b+

n+ + b−

n−

2
. (2)

These metrics can turn into a very general way of
describing the geometrical complexity of the classes, since
the shape of the balls depends on the distance chosen
(e.g. Euclidean, Manhattan or the maximum distance). The
mechanism for covering the feature space attempts to use as
few balls as possible to cover all points. If the dataset can
be covered by a few large balls, then its complexity will be
low, but if many small balls are needed, it means that many
little clusters of different classes are near each other, and the
complexity is thus high. Both ONBtot and ONBavg are, as a
result, higher the more complex the data is. The difference
between them is that ONBavg gives the same weight to all
classes, while ONBtot does not distinguish classes but gives
the same weight to all instances.

2.2.4 Feature space dimensionality

One of the main issues that occur in many datasets and
has been tackled from many perspectives is dimensionality.
Dimensionality refers to the number of variables where each
instance takes values. High dimensionality has long been
considered a problem for classification algorithms, known
as curse of dimensionality [20]. It is not directly related to
the way classes interact with each other, but a high number
of features can hinder the performance of a classifier with
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a dataset that is otherwise not considered complex, due
to the fact that most distance metrics lose meaning when
measuring across many variables.

Dimension can be measured in absolute terms, but the
complexity that derives from it is also related to the number
of instances in the dataset. Two problems with the same
number of features are not equally complex if the first one
has 10 times more instances than the other. As a result, an
instances-to-features rate (T2) can be considered a complex-
ity metric that can give a better account of this relation.

2.3 Other models for complexity

When trying to reduce the complexity present in a dataset,
one can take complexity measures into account for evalua-
tion purposes, and use other ways of modeling complexity
when training and performing data transformations. For in-
stance, considering that each class presents different distri-
butions across each variable, some similarity or dissimilarity
metrics for distributions could be used.

The Kullback-Leibler divergence is a well-known mea-
sure of how a distribution differs from another one, it is
asymmetric as it usually compares a distribution coming
from data with a distribution representing a model or the-
ory. If these are defined on a discrete probability space X ,
then the divergence is formulated as

DKL(p‖q) =
∑

x∈X

p(x) log
p(x)

q(x)
. (3)

This quantity could provide an intuition on how two
distributions are overlapping or separated. It is higher the
more different the distributions are. One way to retrieve
a symmetric value out of it is to add the Kullback-Leibler
divergence of the distributions in reverse order: DKL(p‖q)+
DKL(q‖p). For both measures, the chosen distribution when
applying them to class separability could be a Bernoulli
distribution for each feature in the encoding, so that their
values are considered either high or low. If we model all
features at the same time, a categorical distribution could
be employed. Assuming a binary classification problem, we
could measure the dissimilarity of the distribution corre-
sponding to positive instances against the distribution of
negative instances, which would provide a sense on how
easy it is to differentiate them.

2.4 Reducing complexity in datasets

There are several approaches to complexity reduction in
datasets. This section provides a general overview of the
different aspects that can be treated and techniques for
doing so.

Dimensionality of data has been one of the most di-
versely tackled issues. A multitude of methods exist in the
literature, ranging from simple feature selection to nonlinear
feature learning. A thorough review of all these can be
found in [5], but we enumerate and describe the main ones
below.

However, there are other emerging methods that may
be able to modify other aspects of the data and reduce
complexity along the way. Some of those are distance metric
learning methods.

2.4.1 Feature selection

Assuming that not every variable has the same relevance
for the purposes of classification, an initial approach to
dimensionality reduction can be to simply discard some of
them, retaining only the ones that help the classifier the
most. This process is known as feature selection [5]. Of
course, there exist a plethora of criteria that can apply for
this purpose.

Filters: This variety of techniques is mostly founded
on statistical and information theory measures, such as
the joint mutual information, the conditional mutual in-
formation, the Kullback-Leibler divergence or minimum-
reduncancy-maximum-relevance. The objective is to quan-
tify the utility of each variable and keep only the most useful
ones. In fact, some approaches take class separability into
account as well [21], [22].

Wrappers: Another way of looking at feature se-
lection is shaping it as an optimization problem, finding
an adequate fitness function, typically the performance of
a classifier, and making use of one of the many existing
metaheuristics available, for instance, genetic algorithms,
simulated annealing or particle swarm optimization, to
name a few.

Embedded methods: Some classifiers have built-in
feature selection, so that they only look at the information
provided by the most relevant variables. These are usually
decision trees like C4.5 [23].

2.4.2 Linear feature extraction

Another way of reducing the number of variables is to at-
tempt to summarize most of the information of the original
variables in a smaller set of new variables, which emerge as
linear transformations of the original ones.

Principal component analysis (PCA) [24], [25]: PCA
is a well-studied technique that solves the problem of ob-
taining features which retain the maximum possible vari-
ance while being uncorrelated to each other. It also allows
to recover the original data from the projected points while
losing the minimum amount of information as measured by
the mean squared error.

Linear discriminant analysis (LDA) [26]: This is a
supervised method able to extract linear combinations of
features which achieve good class separation. Under as-
sumptions of normality, independence and homoscedascity,
it can project the data onto a space consisting of new
coordinates that best discriminate the classes. Its main draw-
back is that the number of resulting variables is completely
determined by the number of classes. More specifically,
for a problem with c classes, LDA will output a space of
c − 1 linear combinations of the original variables. There
is a recent generalization of LDA which claims to solve its
stability issues and achieve better class separation through
a maximum margin criterion [27].

Factor analysis [28]: This technique assumes, unlike
PCA, that a series of hidden factors are generating the
observed data by means of linear combinations. The number
of underlying factors is lower than the number of observed
variables, and they are assumed to have zero mean and unit
covariance (i.e. the identity matrix).
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2.4.3 Nonlinear feature extraction

The most advanced methods for dimensionality reduction
base their new variables on nonlinear transformations of the
original ones.

A lot of these techniques can be grouped in a concept
known as manifold learning, since they attempt to find
structure for a manifold where most of the data lie, and
thus transform each data point onto its coordinates on that
manifold.

Multidimensional scaling (MDS) [29]: This is a clas-
sical methodology that has served as basis for several other
algorithms as well. Its objective is to compute new coor-
dinates for data points while preserving distances among
them as faithfully as possible. Instead of having points as
inputs, it only receives the pairwise distances themselves,
and minimizes a loss function which helps the model obtain
coordinates for each point, creating a space where the given
distances are maintained.

Isomap [30]: This method extends metric MDS in
order to find coordinates that describe the actual degrees
of freedom of the data while preserving distances among
neighbors and geodesic distances between the rest of points.
Isomap constructs a neighborhood graph where each edge
is weighted according to the Euclidean distance among ver-
tices, then uses this to compute geodesic distances instead
of using straight lines. These new distances are potentially
higher than the Euclidean but help capture more informa-
tion about the manifold.

Locally linear embedding (LLE) [31]: The objective of
LLE is similar to that of the previous techniques, but with a
different approach to preserving the local structure. It finds
a linear combination which describes each point from its
neighbors. Once its coefficients have been computed, LLE
optimizes the coordinates for a lower-dimensional space so
that they fit the same expressions.

t-stochastic neighbor embedding (t-SNE) [32]: This
is a technique specially oriented for visualization, so it
finds specially attractive low-dimensional projections of the
data. It consists on assigning, for each pair of points, the
probability that one point would choose the other as its
nearest neighbor if neighbors are computed according to
Gaussian distributions centered on each point. t-SNE then
defines a low-dimensional mapping that tries to preserve
these probability scores.

Autoencoder networks (AE) [14]: AEs are neural
network models which reconstruct the input at their output,
using some kind of bottleneck in between so as to learn
useful information from the data. We explain AEs in further
detail in Section 3.1.

2.4.4 Distance metric learning

Distance metric learning [33] is an area of machine learn-
ing dedicated to learning distances from datasets. These
distances are built to better represent the similarities and
differences among examples than standard distances, such
as the Euclidean distance.

In a supervised learning context, the problem of learning

a distance can be formulated as follows:

argmin
d∈D

l(d, S,D), where (4)

S = {(xi, xj) ∈ X × X : yi = yj} (5)

D = {(xi, xj) ∈ X × X : yi 6= yj} (6)

and l is a loss function that determines the fitness of a dis-
tance to describe the similarities and differences provided
as sets S and D.

Some of the dimensionality reduction methods men-
tioned above can be also seen as distance metric learning
techniques, but there are more algorithms which can learn
distances. Some of them are addressed at improving the
performance of k-nearest neighbors, and others are based
on information theory. Among the most relevant are: NCA
[34], LMNN [35], NCMML [36] and NCMC [36].

2.4.5 Current limitations

Many of the complexity reduction methods explained above
tackle complexity only partially or from a limited per-
spective. In most of the cases, tha main focus is reducing
dimensionality. This can help model data when good quality
coordinates are found, but may discard useful information
present in the class labels.

Some of the available methods consider class separa-
bility when selecting features [21], [22] but they do not
generate new features, and can capture only a partial view
of the whole feature space as a result.

In summary, there is an unexplored possibility of ad-
vanced feature extraction techniques which perform non-
linear transformations of variables in order to find spaces
where classes are further away and easier to identify.

3 AUTOENCODERS FOR COMPLEXITY REDUCTION

The objective of this work is to develop strategies that
address data complexity in a more complete way, that is,
working with transformations of all available features and
incorporating class complexity measures to acquire informa-
tion from the class labels. The result is a collection of models
that are based on AEs because they are very versatile deep
learning architectures, able to transform the data in diverse
ways according to their loss function. Our hypothesis is that
when the loss function takes data complexity into account,
then the AE will have more information to work with and
will generate better features than other feature extraction
methods.

In order to provide an indication on data complexity to
a loss function, it is necessary to look for computationally
simple ways of calculating a penalty that points the training
method in the right direction. This problem can be ap-
proached from several possible perspectives, including the
integration of a complexity metric, a measure of distribution
dissimilarity or a linear separation method.

This section details the theoretical underpinings of our
proposals: Scorer, Skaler and Slicer. First, some basic no-
tions of AEs help establish a starting point for these new
models. Next, the added penalties for Scorer and Skaler are
explained. Lastly, the necessary modifications and compu-
tations needed for Slicer are shown as well.
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3.1 Autoencoder fundamentals

A neural AE [14], [37] is generally a symmetrical neural
network trained to reconstruct the inputs at its output. The
composition of layers up to the middle one computes a
new representation of the input data where some traits
may be induced: lower dimension, sparsity, or robustness
against noise, for example. The feature transformation is
learned by means of a training process that optimizes the
reconstruction error as well as, potentially, other penalties
allowing the introduction of those specific aspects.

]

[ [


Fig. 2. The essential structure of an AE implemented as a fully con-
nected feed-forward neural network, composed of an encoder f and a
decoder g. The training loss of this model is measured as the distance
d between the input x and its reconstruction x′ = (g ◦ f)(x).

A simple AE models the reconstruction problem as a
deterministic function given by the composition of an en-
coder f and a decoder g. When an instance is feeded to the
model, the encoder transforms it to a vector located within
the encoding space, and the decoder maps this vector to the
original feature space.

Consider the diagram in Fig. 2. During training, mini-
batches of samples are propagated through the network.
The AE is evaluated according to the average distance
between original and reconstructed samples. Its weights
are iteratively modified in order to minimize this distance.
There are two typical dissimilarity metrics for this purpose:

• Mean squared error: defined as the average of
squared errors. If x and x′ are a training sample and
its reconstruction, it is expressed as:

L(x, x′) =
1

n

n
∑

i=1

(xi − x′
i)

2 (7)

• Cross entropy: this measure is effective when model-
ing data where values lie in the [0, 1] interval, since
it is usually implemented as the cross entropy of two
Bernoulli distributions. The formulation is as follows:

L(x, x′) = −
n
∑

i=1

xi log x
′
i + (1− xi) log(1− x′

i) (8)

In general, any kind of measure that indicates the dif-
ference among two data points of the same type can be
used. For certain types of structured data, such as images or
sequences, specific reconstruction errors may also apply. For
instance, a perceptual loss [38] can be very fitting for image
reconstruction, since it focuses more in the appearance of the
image instead of trying to accurately recover each individual
pixel, which can lead to softer and blurrier images.

Once one of these dissimilarity metrics is chosen, the loss
function of the AE can be defined:

J(θ;S) =
∑

(x,y)∈S

L(x, (g ◦ f)(x)) , (9)

where θ holds the parameters of the network, and thus
determines f and g, and S is a set of training instances.

Diverse kinds of regularizations can be applied to the
loss function with the objective of adjusting the behavior of
the AE, such as sparsity, contraction or variational inference.
Each of these result in a slightly different AE variant with
its own applications. Although these and several other reg-
ularizations help build better feature spaces, to the best of
our knowledge there is no AE variant focusing on enabling
class separability or reducing data complexity yet.

AEs are generally trained with common neural net-
work optimizers, such as stochastic gradient descent [39]
or Adam [40]. They decide how to update the parameters in
an iterative process which computes the gradient of the loss
function via backpropagation [41].

3.2 Regularizing autoencoders with label information

As described above, a basic autoencoder is trained using
a loss function which evaluates the distance between the
input feature vector and its reconstruction through the net-
work. It is clear, by its definition, that instance labels are not
used at all to compute the loss function, nor does the AE
receive this information as input. This has its advantages
and shortcomings. A benefit is that one may train AEs using
unlabeled data and obtain valuable knowledge as a result.
This allows for their use in several widespread applications
[42], such as anomaly detection, data denoising, synthetic
instance generation and semantic hashing.

One possible drawback, when applying AEs to classifi-
cation problems, is that they will extract features that may
or may not help distinguish the classes, since they are not
provided with the labels. However, this is not applicable to
all AE-based models, since some of them can take the class
label into account when computing the encoded represen-
tation, either directly as an input layer to the network, or
indirectly, by informing the loss function.

A common way to modify the behavior of the training
process and improve the solutions is to add a penalty term
Ω to the loss function promoting certain aspects of the
encoding or reconstruction mappings. This penalty may be
dependent on the weights of the network or the resulting
codes. It is added with a weight coefficient λ in order to
adjust its importance with respect to the standard recon-
struction error:

J (θ;S) =
∑

(x,y)∈S

L (x, (g ◦ f) (x)) + λΩ (θ;S) (10)

For instance, one well-known regularization consists in
penalizing high levels of simultaneous activations within
the codes. This, usually called a sparsity regularization [15],
helps maintain a low number of active neurons in the
encoding for each sample.

In our case, the objective is that the resulting feature
transformation helps better separate different classes, so the
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loss function should receive some kind of label information
in order to be able to learn from it. The procedure can thus
be similar to a penalty modification, but using the class label
within the penalty term Ω.

There could be numerous ways of analyzing the relation
of codes and classes. For example, trying to optimize a
complexity measure or maximizing the difference among
class distributions, as well as wrapping a simple classifier
so as to assess the quality of the features. These are the main
ideas behind our three proposals:

• Scorer, an AE model with a Fisher’s discriminant
ratio-based penalty. Its objectives may be collaborat-
ing or in opposition, but it needs to find a balance
between good instance reconstructions and low class
overlap.

• Skaler, an AE using the KLD to separate class distri-
butions. The encodings are modeled as a categorical
distribution and the model attempts to maximize
the divergence among the distribution of positive
instances and that of negative instances. This should
draw them apart from each other.

• Slicer, an AE which internally trains a linear least-
squares support vector machine. The internal clas-
sifier need not be perfect, but it helps the model
analyze how easy it is to classify the instances using
the generated features. The objective, in this case, is
to maximize the linear separation of both classes.

Along the rest of this section, each one of these AE-based
models is thoroughly described.

3.3 Scorer

The first of our approaches to complexity reduction is to
directly employ one of the complexity metrics as penalty,
assuming that, if an AE is able to optimize this metric
for a given dataset, the resulting representation will be
less complex than the original. For this purpose, Fisher’s
discriminant ratio has been selected, as it is simple enough
to be computed on the fly during training. The result is an
AE which performs supervised class overlap reduction, or
Scorer for short.

In order to introduce a complexity penalty based on
Fisher’s discriminant ratio, we consider the average of
the discriminant ratios of each feature. This is different to
the complexity measure commonly known as maximum
Fisher’s discriminant ratio or F1, which instead calculates
the maximum of those ratios. In this case, we chose the
average because it should provide better gradients in or-
der to optimize the objective. This was corroborated by a
preliminary experimentation.

The following equations formally define the complexity
penalty computed within Scorer, N+ denoting the amount
of positive examples and N− the number of negative ones.
First, we define the necessary terms for the mean of each
variable for positive instances and the same for negative
instances.

µ+
j =

1

N+

∑

(x,+1)∈S

f(x)j , µ−

j =
1

N−

∑

(x,−1)∈S

f(x)j ,

(11)

Next comes the standard deviation for each variable and
for each class, calculated as the mean squared value minus
the square of the mean:

σ+
j =





1

N+

∑

(x,+1)∈S

f(x)2j



− (µ+
j )

2 (12)

σ+
j =





1

N−

∑

(x,−1)∈S

f(x)2j



− (µ−

j )
2 (13)

This allows to put together an expression for the average
Fisher’s discriminant ratio, which is introduced in the loss
function in a way that ensures its value to be between 0 and
1:

F =
1

nf

nf
∑

j=1

(µ+
j − µ−

j )
2

σ+
j + σ−

j

, Ω(θ;S) =
1

1 + F
(14)

The penalty term, drawing inputs from the encoding
layer and the class label, is simply computed at the end
of each training and added to the loss function, multiplied
by a weight hyperparameter λ so as to balance it with
the reconstruction objective. Figure 3 extends the basic AE
diagram with these new components in order to illustrate
how Scorer differs from the basic model.
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Fig. 3. Schematic illustration of the Scorer model. The average Fisher
discriminant ratio of the encoded class distributions contributes to the
training loss.

3.4 Skaler

The next step in inducing a class-separating behavior in an
AE is to use information theory-based measures. In this case,
the AE is not forced to directly optimize a complexity metric.
Instead, it receives information about the current relation
among class distributions, and is assessed according to the
similarity of those.

Although cross entropy is the conventional measure for
classification loss, we refrain from using it as a penalty
because the objective is not to directly classify, thus con-
centrating all instances on one of two points, but to provide
a representation that better clusters examples.

Skaler is a supervised feature extraction model with
a KLD-based penalty for class separation. As explained
above, the KLD gives an asymmetric view on how two
distributions are different. In this case, the objective is to
maximize the difference among the distribution of encod-
ings belonging to the positive class and those belonging to
the negative class. A schematic view is provided in Figure 4.

Both positive and negative encodings can be modeled as
following categorical distributions, if we assume that each
feature in the encoding can have a high (1) and a low (0)
state and that the highest feature is the one that matters. This
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Fig. 4. Schematic illustration of the Skaler model. The KLD between the
positive and the negative-class encodings contributes negatively to the
training loss.

is a simplification but it helps build a KLD-based formula-
tion that is easy to implement and able to train successfully.
Then, the sample space of each distribution consists of
events associated to each feature, indicating whether that
feature is the highest. If P+(j) denotes the probability that
the j-th feature is highest for positive instances and P−(j)
does the same for the negative class, the KLD-based penalty
function would be as follows:

Ω(θ;S) = −
d

∑

j=1

P+(j) log
P+(j)

P−(j)
(15)

Now, in order to compute valid probabilities for each
case of the categorical distribution out of the encoding
generated by the AE, we take the mean of each variable
in a vector and perform the softmax activation function,
obtaining a vector of values summing 1, thus representing a
distribution. The j-th component of that vector corresponds
to the probability that the j-th feature is high for any given
data sample:

P+(j) = softmax





1

N+

∑

(x,+1)∈S

f(x)





j

(16)

P−(j) = softmax





1

N−

∑

(x,−1)∈S

f(x)





j

(17)

Some preliminary tests revealed that it is easy for this
penalty to force encodings onto a single class-dependent
value for any inputs. It was observed, however, that maxi-
mizing the entropy of the encoding variables helped prevent
this issue, so it is added as a negative term to the penalty in
the implementation.

3.5 Slicer

The third proposal of this work goes a bit further than the
two previous ones, since it incorporates not only a different
penalty function, but also additional learnable parameters.

This alternative regularization is inspired on least-
squares support vector machines (LSSVM) [43]. These mod-
els attempt to learn the hyperplane which best separates
both classes, but the difference between them and tradi-
tional SVMs lies on the objective function. For both models,
the linear (non-kernelized) version of the classifier optimizes
parameters w and b of the hyperplane wTx + b. However,
the functions that both models minimize are different. In the
case of the LSSVM, the parameters are fitted to optimize the
following expression:

1

2
‖w‖

2
+

β

2

∑

(x,y)∈S

(

1− y
(

wTx+ b
))2

(18)

The idea behind our model is to find a representation
which facilitates the task of fitting a linear classifier. The
resulting model is an AE for supervised linear classifier
error reduction, hereinafter called Slicer.

In order for the model to compute the linear classifier
objective function, we add trainable weights w and b to the
computation graph of the neural network. These are used
to get the output of a linear SVM, allowing thus to train the
SVM and use it as a penalty to modify the behavior of the
encoder at the same time:

Ω(θ;S) =
1

2
‖w‖

2
+

β

2

∑

(x,y)∈S

(

1− y
(

wT f(x) + b
))2

,

(19)
where β is just a hyperparameter weighting the importance
of the LSSVM loss, and w and b are updated by the model
after each epoch, just like the rest of neural network weights.
In this case, the value of y is 1 for the positive class and −1
for the negative one.

Figure 5 illustrates how the AE is modified using the
LSSVM objective function, taking the encoding z = f(x) as
input for the LSSVM and using a prediction p = wT z + b to
calculate its loss.
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Fig. 5. Schematic illustration of the Slicer model.

The result is a model that simultaneously trains a very
simple classifier on the encoded data and uses its objective
in order to find better representations. Our assumption is
that there will exist some level of collaboration between both
models and this will help the new features become more
practical for classifiers to use.

4 EXPERIMENTAL SETUP

Our proposals have been tested to verify their performance
in reducing the complexity of data according to some mea-
sures, as well as in generating feature spaces where binary
classification is easier. This section first goes through the
materials for the experiments: data, methods and metrics,
and then provides details on the implementations of the
newly proposed models.

The experiments that were performed in order to an-
alyze whether using class information in an AE provides
an advantage include a broad range of datasets as well as
several well-established methods for comparison purposes.
The following sections explain the data, compared methods
and evaluation metrics used along the experimentation.
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4.1 Data

The methods have worked with a collection of 27 datasets
from several sources with varying dimensionalities. Thir-
teen of them originally have binary classes, six derive
from the individual labels in a multilabel dataset, five are
“grouped” binarizations where several classes are taken as
the positive class and the rest as the negative one, and two
originate from one-vs-all scenarios where only one arbitrary
class is chosen as the positive one.

The grouped binarizations have been chosen so as to
present a binary scenario that would make sense with each
of the problems posed by the datasets: distinguishing vow-
els from consonants (when the original label was the letter),
odd from even handwritten digits, walking from staying
movement signals and two high-level categories of soil from
images. One-vs-all schemes have not been performed in
these cases due to the high amount of classes and resulting
experiments.

The datasets are briefly described and referenced in the
supplementary material.

4.2 Complexity reduction methods

In addition to our proposals Scorer, Skaler and Slicer, we
have selected four dimension reduction methods which can
contribute to reducing the complexity of these datasets:
PCA, LLE, Isomap and basic AE. PCA is used as the baseline
for dimension reduction, LLE and Isomap are selected due
to their manifold learning purpose, and the basic AE serves
to analyze whether our proposals improve its behavior.
None of these has the capability of learning from the classes,
but they do address the dimensionality problem. The ob-
jective of our experiments is, thus, to test whether class
information can be useful for an automatic feature learner to
retrieve better quality attributes. Please refer to Table 1 and
Section 2.4 for a brief description of the idea behind each
technique and a longer explanation, respectively.

TABLE 1
Brief description of each method available in the experiments

Method Description

PCA [25] Linear variance maximization
LLE [31] Neighborhood-based manifold learning
Isomap [30] MDS-based manifold learning
Basic AE [44] Neural network for data reconstruction
Skaler Proposed AE with Kullback-Leibler-based penalty
Scorer Proposed AE with discriminant ratio-based penalty
Slicer Proposed AE with LSSVM-based penalty

4.3 Evaluation metrics

In order to provide different perspectives on the perfor-
mance of all methods, a diverse set of evaluation metrics
has been selected. The objective is to be able to analyze
the possible advantages and shortcomings of each available
method.

We have trained our proposals and the compared meth-
ods to reduce the dimension of the datasets to the square
root of the original dimension. The feature transformation
learned by each one has been used to compute a list of

complexity metrics for the resulting projections. Afterwards,
we have trained several simple classifiers in order to assess
the ease of classification with the generated features.

In summary, the metrics used for evaluation of each com-
plexity reduction method can be categorized into classifier-
agnostic and classifier-dependent.

Classifier-agnostic metrics are some of the complexity
measures discussed in Section 2.2. They have been cho-
sen essentially for their popularity and easy interpretation.
Morphology-based ONB metrics have also been computed
so as to verify their affinity with the actual classification
performance as well.

On the other hand, a partial objective of this experimen-
tation is to check whether the generation of new features
can actually ease classification tasks if aided by class infor-
mation. The logical step is thus to analyze the performance
of several datasets with the resulting variables.

• F-score. Derived from precision (the ratio of instances
correctly predicted as positive) and recall (the ratio of
positive instances correctly detected), it is essentially
the harmonic mean of both:

F-score =
2× Precision × Recall

Precision + Recall
(20)

• Area under the ROC curve (AUC). This metric is
computed as the area, out of 1, that lays under the re-
ceiver operating characteristic curve, which denotes,
as the prediction threshold goes from 0 to 1, the ratio
of true positives related to the ratio of false positives.

• Cohen’s Kappa. It measures the level of agreement
between the predictor and the ground truth, that
is, the extent to which the coincidences differ from
random chance (pc). The mathematical definition is:

κ = 1−
1− Acc

1− pc
. (21)

These evaluation metrics have been chosen over other pop-
ular ones such as accuracy or precision since they attempt
to provide a better overall picture of the performance with-
out being affected by imbalance. Some other metrics that
are also considered common complexity measures are not
actually classifier-independent: linear classifier error (L2),
nonlinearity of linear classifier (L3) and 1NN classifier error
(N3). These were previously defined in Section 2.2.

Table 2 gathers all of these selected metrics with a short
interpretation of each one. In order to obtain robust values,
they have been computed over a 5-fold cross validation
scheme.

4.4 Parameters

The last details about the execution of the experiments are
provided in Table 3, which shows all the values for the
parameters involved in the each of the different methods.

5 EXPERIMENTAL RESULTS

This section presents the outcomes of the experiments per-
formed, focusing on comparing the different methods, as
well as drawing conclusions from the obtained metrics and
graphics.
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TABLE 2
Brief description of each evaluation metric used for the experiments,

classified according to their dependency on a classifier

Metric Meaning

A
g

n
o

st
ic F1 (Fisher) Class overlap according to mean and variance

F3 (efficiency) Feature ability to separate classes
ONB (total) Total number of balls in cover
ONB (average) Average number of balls in cover

D
ep

en
d

en
t L2 Linear classifier error

L3 Linear classifier nonlinearity
N3 1NN classifier error
F-score Tradeoff between precision and recall
AUC Area under the ROC curve
Kappa Agreement between prediction and truth

TABLE 3
Enumeration of parameters used throughout the experiments.

Parameter Value

Encoding dimension max
{

min
{√

d, n

10

}

, 2
}

Epochs 200
Number of hidden layers 3 (1 for < 100 variables)
Activation function (AEs except Skaler) ReLU
Activation function (Skaler) Sigmoid
Penalty weight - Scorer 0.01
Penalty weight - Skaler 0.1
Penalty weight - Slicer 1
Reconstruction error Cross entropy

5.1 Results

Experiments for the 27 datasets have been conducted in a
5-fold cross validation scheme. A total of 16 metrics were
computed for each case, and the full results are available
at the associated website1. Next, we show and analyze
aggregated results and the corresponding statistical tests.

Table 4 holds the average ranking that each dimension-
ality reduction method achieved for each metric throughout
the dataset collection. The winning method for each row is
marked in underlined bold text. The number of overall first
positions in rankings is summed up and shown in the last
row of the table. The first observation that can be extracted
is that model Slicer turns out to be consistently superior in
most metrics, resulting in a vastly higher amount of won
cases than the rest.

Looking at the table into more detail, we can observe
that the three supervised AE-based methods overall reach
better metrics than the traditional feature extraction tech-
niques, especially when analyzing the resulting predictive
performance of the different classifiers.

In order to calculate which differences are significant,
the Friedman’s Aligned Ranks test was performed with its
corresponding post-hoc test where the winning algorithm
was chosen as the control for each metric. Table 4 organizes
the results of these tests, indicating which methods were
significantly worse than the winner with two levels of
confidence (p < 0.05 and p < 0.01). The tests allow to assess
whether the values found by the rankings can be considered
enough to state that two methods are performing differently.
It is important to notice, however, that each statistical test

1. https://ari-dasci.github.io/S-reducing-complexity/

TABLE 4
Average ranking for each method in each evaluated metric. A horizontal

line separates complexity metrics from classifier evaluation metrics.
The best method is marked with a star ⋆. Those which are worse with
p < 0.05 are marked with ×, and those which are worse with p < 0.01

are marked with ⊗. The total number of first positions achieved by each
method is shown in the last row.

PCA LLE Isomap AE Skaler Scorer Slicer

F1 ⊗ 5.885 ⊗ 6.115 ⊗ 5.731 ⊗ 4.038 ⋆ 1.577 2.308 2.346
F3 ⊗ 4.250 ⊗ 5.231 ⊗ 4.846 ⊗ 5.654 2.788 3.000 ⋆ 2.231

N3 ⊗ 4.692 ⊗ 5.173 ⊗ 5.308 × 4.269 3.654 2.577 ⋆ 2.327

L2 ⋆ 2.712 × 4.519 3.981 ⊗ 5.654 × 4.442 3.846 2.846
L3 2.769 × 4.500 4.115 ⊗ 5.500 ⊗ 4.923 3.654 ⋆ 2.538

ONBtot ⊗ 4.481 ⊗ 6.115 ⊗ 4.519 ⊗ 4.481 3.442 3.019 ⋆ 1.942

ONBavg ⊗ 4.442 ⊗ 6.077 ⊗ 4.519 ⊗ 4.577 × 3.538 2.904 ⋆ 1.942

k
N

N

F-score 3.096 ⊗ 6.923 ⊗ 4.904 4.115 3.519 3.231 ⋆ 2.212

AUC 3.288 ⊗ 7.000 ⊗ 4.750 × 4.038 3.500 3.250 ⋆ 2.173

Kappa 3.096 ⊗ 7.000 ⊗ 4.827 × 4.038 3.558 3.346 ⋆ 2.135

S
V

M

F-score 3.788 ⊗ 6.846 ⊗ 4.673 3.538 3.538 2.923 ⋆ 2.692

AUC × 4.000 ⊗ 6.846 ⊗ 4.865 3.462 3.346 2.962 ⋆ 2.519

Kappa 3.904 ⊗ 6.846 ⊗ 4.827 3.346 3.577 2.962 ⋆ 2.538

M
L

P F-score ⊗ 4.077 ⊗ 6.769 ⊗ 3.962 ⊗ 4.731 2.596 ⊗ 3.865 ⋆ 2.000

AUC ⊗ 4.000 ⊗ 7.000 ⊗ 4.058 ⊗ 4.635 2.404 ⊗ 3.942 ⋆ 1.962

Kappa ⊗ 4.000 ⊗ 7.000 ⊗ 4.077 ⊗ 4.596 2.558 ⊗ 3.827 ⋆ 1.942

wins 62 10 17 19 78 64 188

had information only about a specific metric, and not the
whole picture. As a result, the fact that a test does not find
significant differences among two methods does not mean
that they perform the same in general.

As a last summary, we have gathered all results and
performed the Friedman’s Aligned Ranks test in order to ob-
tain potential global differences among methods. Although
values from different metrics are mixed in these data, the
test only considers rankings so it allows to extract some
intuitions about the overall performance and whether differ-
ent methods can be discerned from their evaluation metrics.
This test is visualized in Figure 6, where critical distances
are annotated with a confidence level of 99% (p < 0.01).

2 3 4 5 6 7

Slicer

Scorer

Skaler

PCA

AE

Isomap

LLE

Fig. 6. Critical distance plot for all results. Horizontal lines join methods
where significant differences were not detected.

The supplementary material for this paper also includes
density estimation plots which provide a visual account of
the overall results of each method for each metric.

5.2 Discussion

The previous results allow to notice some interesting details.
One of them is the fact that the model that performed
best according to the F1 metric, Skaler, is not the one that
attempts to optimize that metric. This suggests that, within
a neural network model, the KLD-based loss penalty is
more useful for this purpose than the F1 metric itself. It
is also noteworthy that Skaler, having reached the best
separability metrics according to the F1 metric, ended up
losing performance to Slicer when evaluated by means of
actual classifiers. This could mean that the F1 metric, despite
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being widely known and used, is not the best estimator of
classifier performance.

Looking further at the relation between the complexity
metrics and the classification metrics for each classifier, it
is straightforward to identify the complexity metrics that
align best with classifier performance. Those would be F3,
N3, L3 and the morphology-based metrics. However, the
complexity metrics where rankings are most similar to the
classification rankings seem to be ONBtot and ONBavg.

As to the comparison among complexity reduction meth-
ods, the computed rankings, critical distance plots and
joyplots reveal that Slicer presents a clear advantage over
the rest of methods in the majority of metrics. The individual
statistical tests show many significant differences between
Slicer and other methods, specifically LLE and Isomap.
Some differences are also found from Slicer to PCA and
AE, although not for every case. However, it is important
to notice that Slicer is consistently superior to every other
method across almost all metrics, something that these tests
do not take into account. A more global perspective is given
by the critical distance plot in Figure 6, which does find
significant superiority of Slicer over the rest of methods.

In addition to Slicer taking the top place in classification
tasks, we can also see that the other supervised AEs tend
to be superior than the unsupervised methods in many
cases, but the differences are smaller. In fact, PCA is also
competing with them when the kNN classifier is employed
for classification, which is interesting considering the sim-
plicity of the method. The standard AE, however, does not
achieve very good results in comparison to the improved
versions with class-informed penalties. This leads to deduce
that these types of regularizations are helping differentiate
our proposals from what is otherwise the exact same neural
network architecture. This idea is corroborated by the over-
all number of wins in Table 4, where both Skaler and Scorer
achieve a higher number of wins than the rest except Slicer.
Furthermore, the critical distance plot in Figure 6 shows a
significant difference from Scorer and Skaler to the classical
feature extraction techniques, without being able to discard
whether they perform equally.

In summary, the experimentation has shown that defin-
ing a class-based penalty in an otherwise unsupervised
learning method such as an AE does help generate more
useful features when the objective is training classifiers.
Although the level of benefit will depend on the classifier
used, any one of them will have some improvement in
its performance. Of all the proposed approaches, the one
that seems to retain the most information about classes
within the encoded features is Slicer, which simultaneously
learns the encoding and a linear classifier for the encoded
variables.

6 FINAL COMMENTS

This work has introduced the concept of class complexity
onto AEs that learn from class labels. If dimension reduction
helps classifiers by providing more compact versions of the
data, complexity reduction goes further by also improving
the shape and distribution of the different classes. This con-
cept is realized in 3 specific models with distinct behavior,
Scorer, Skaler and Slicer.

Similarly to other preprocessing methods, these intend
to ease a later classification task. In this case, only binary
targets have been supported, since most of the complexity
metrics were initially defined for binary problems. It would
be possible to extend the proposed framework to multiclass
or even multi-label datasets, although the penalty functions
as well as the implementations would need notable mod-
ifications. A similar approach could also be followed for
regression problems, where the target variable could help
model the embedding space.

An additional option that may be explored is the ap-
plication of a combination of penalties, since they are not
necessarily exclusive, including improvements on basic AEs
such as variational AEs. Some preliminary tests suggested
that combining Slicer and Scorer may provide a slight im-
provement in classification performance, but it would need
meticulous optimization of the selected penalties and their
weights in order to provide promising results. Further steps
would include introducing other complexity measures into
the penalty function, so as to tackle other aspects of data
complexity, as well as learning from just a small number of
labels in a semi-supervised scenario [45].

The experimentation developed to support the proposals
has served not only to highlight the potential of Slicer as a
better alternative for feature extraction, but also to notice
which complexity measures are better predictors of classi-
fier performance. In particular, morphology-based metrics
like ONBtot and ONBavg seemed to be more aligned with
classifiers.
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