
Neurocomputing 491 (2022) 509–521
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Strategies for time series forecasting with generalized regression neural
networks
https://doi.org/10.1016/j.neucom.2021.12.028
0925-2312/� 2021 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: fmartin@ujaen.es (F. Martínez), fcharte@ujaen.es (F. Charte),

mpfrias@ujaen.es (M.P. Frías), ammartin@ujaen.es (A.M. Martínez-Rodríguez).
Francisco Martínez a,⇑, Francisco Charte a, María Pilar Frías b, Ana María Martínez-Rodríguez b

aDepartment of Computer Science, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Jaén, Jaén 23071, Spain
bDepartment of Statistics and Operations Research, University of Jaén, Jaén 23071, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 March 2021
Revised 21 July 2021
Accepted 12 December 2021
Available online 24 December 2021

Keywords:
Generalized regression neural networks
Time series forecasting
Software
This paper discusses how to forecast time series using generalized regression neural networks. The main
goal is to take advantage of their inherent properties to generate fast, highly accurate forecasts. To this
end, the key modeling decisions involved in forecasting with generalized regression neural networks
are described. To deal with every modeling decision, several strategies are proposed. Each strategy is ana-
lyzed in terms of forecast accuracy and computational time. Apart from the modeling decisions, any suc-
cessful time series forecasting methodology has to be able to capture the seasonal and trend patterns
found in a time series. In this regard, some clever techniques to cope with these patterns are also sug-
gested. The proposed methodology is able to forecast time series in an automatic way. Additionally,
the paper introduces a publicly available R package that incorporates the best presented modeling
approaches and transformations to forecast time series with generalized regression neural networks.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Time series forecasting is a common task in many fields such as
business [1], energy [2] or environment [3]. Effective forecasts can
save a lot of time and money, facilitating planning, scheduling and
other activities.

There are situations in which a great number of time series need
to be forecast quickly, such as the sells of different retail products.
In this context fast forecasting tools, which can be applied in an
automatic way, are highly valuable. These requirements preclude
some common techniques; for example, the ARIMA methodology
[4] is usually applied under the supervision of an expert, while
other forecasting tools can be used automatically but have high
computational needs [5].

Generalized regression neural networks (GRNNs) [6], a variant
of radial basis function networks [7], exhibit interesting properties
to develop a fast forecasting tool: 1) they have a single-pass learn-
ing, 2) they only need to set or fit one parameter and 3) they pro-
duce deterministic results, so that it is not necessary to train
several neural networks to achieve more accurate and trustworthy
results.
Motivated by these properties, this paper analyzes how to fore-
cast time series using generalized regression neural networks in an
effective way. Several strategies to deal with the key factors
involved in forecasting time series with generalized regression
neural networks are proposed. These insights and strategies should
assist the forecaster in finding a balance between automatic, fast
predictions and highly accurate forecasts.

All the techniques explained in this paper have been incorpo-
rated into an R package that is publicly available on CRAN, the
Comprehensive R Archive Network. This way, any practitioner
can easily benefit from the different approaches proposed in this
work.

The remainder of this paper is structured as follows. In Section 2
generalized regression neural networks are analyzed. Also, it is dis-
cussed how these neural networks can be applied in a time series
forecasting context. In Section 3 several modeling alternatives are
proposed. Section 4 explains how to transform the training exam-
ples so that GRNN can accurately forecast a time series with a
trend. In Sections 3 and 4 different strategies, applied in previous
works, are also described. In Section 5 the proposed strategies
are analyzed according to forecast accuracy and computational
time using two data sets. Section 6 introduces the tsfgrnn R pack-
age, which incorporates the best modeling and transformation
approaches proposed in this work. Finally, Section 7 draws some
conclusions.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.12.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2021.12.028
http://creativecommons.org/licenses/by/4.0/
mailto:fmartin@ujaen.es
mailto:fcharte@ujaen.es
mailto:mpfrias@ujaen.es
mailto:ammartin@ujaen.es
https://doi.org/10.1016/j.neucom.2021.12.028
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
2. Time series forecasting with GRNN

A generalized regression neural network is a variation of a
radial basis neural network proposed by Specht [6] and used pri-
marily for classification and regression. A GRNN is an artificial neu-
ral network made up of three layers: the input, hidden and output
layer, see Fig. 1. The hidden layer has radial basis neurons whose
centers are the training examples. Normally, the radial basis func-
tion is the multivariate Gaussian function:

Gðx; xiÞ ¼ exp �kx� xik2
2r2

 !
ð1Þ

where xi and r are the center and the smoothing parameter respec-
tively and x is the input vector. The output of a hidden layer neuron
is related to the closeness of the input vector to the center, scaled by
the smoothing parameter.

Given a training set consisting of n training patterns and their
associated targets—vectors fx1; x2; . . . xng and fy1; y2; . . . yng respec-
tively—, the output for an input pattern x is computed in two steps.
First, the hidden layer produces a set of weights associated with
the closeness of x to the training patterns:

wi ¼
exp �kx�xik2

2r2

� �
Xn
j¼1

exp � kx�xjk2
2r2

� � ð2Þ

The weights sum to one and represent the contribution of every
training pattern to the final result. Next, the output layer computes
the output as:

ŷ ¼
Xn
i¼1

wiyi ð3Þ

so a weighted average of the training targets is obtained, where the
weights are related to the closeness of the input to the training pat-
terns—the closer the higher. The role of the smoothing parameter is
to control how many targets have significant weights in the
weighted average, that is, the level of smoothing in the output.
When r is large all of the targets have a small and similar weight,
so the result is close to the mean of the targets. On the other hand,
when r is small only the targets whose patterns are close to the
input have significant weights.

2.1. Application of GRNN regression to time series forecasting

In order to apply GRNN regression in a time series forecasting
setting the historical values of a series are used to extract a set of
examples—a training set. An example is a pair formed by a target
pattern, a historical value of the series, and a training pattern con-
sisting of several historical values previous to the target pattern.
x1

x2

xk

G(x, x1) w1y1

G(x, x2) w2y2

G(x, xn) wnyn

… … …

Fig. 1. Structure of a GRNN.

510
This way an example relates the future behavior of a series—target
pattern—with its past behavior—training pattern. For instance,
given the time series s ¼ fy1; y2; . . . ; y40g and assuming that an
example is formed by a historical value representing the target pat-
tern and a training pattern consisting of the four previous historical
values of the target, a subset of the 36 examples that can be
extracted from s are shown in Fig. 2.

The set of examples is used to train the GRNN model, so it can
learn how to predict the future behavior from its past. Once
trained, the input pattern to the model are the last historical values
of the series, its last behavior, which is used to predict the future
values of the series. The input pattern has the same structure that
the training patterns of the examples. For instance, for the previous
example, whose training set is shown in Fig. 2, the input to the
model would be the vector fy37; y38; y39; y40g, that is, the last four
values of the series.

As explained before, to generate its prediction a GRNN model
produces a weighted average of the target patterns of its training
set. In this weighted average, the weight of each target is related
to the closeness between its associated training pattern and the
input pattern. For instance, suppose that the next future value of
the time series in Fig. 3, consisting of 40 historical values, needs
to be forecast. For this purpose a GRNN model is trained. Each
example in the training set is formed by a historical value, the tar-
get pattern, and a training pattern consisting of the four previous
historical values of its target. For the time series in Fig. 3, Fig. 4
shows its first training example and the input pattern used to pre-
dict the next future value of the series. The training pattern of this
first example is relatively close to the input pattern so its target
pattern will have a significant weight. On the other hand, the train-
ing pattern of the second example—see Fig. 5—is not so close to the
input pattern and therefore its associated target will have a smaller
weight.

The intuition behind using GRNN for time series forecasting is
that previous patterns that are close—similar—to the latest values
of the series can be found in the hope that a smoothed combination
of their subsequent patterns will be similar to the future behavior
of the series.

In spite of their interesting properties, GRNN has not been
commonly used to forecast time series. In [8], the forecast accu-
racy of several machine learning models, including GRNN, are
compared using a subset of the monthly time series from the
M3 competition [9]. The smoothing parameter is selected among
a number of preset values using K-fold cross-validation. In our
opinion this comparison has important limitations, first and fore-
most, only one step ahead forecasts are considered. Also, one of
the contestants of the NN3 competition [10] used GRNN, achiev-
ing the best predictions for the reduced data set, but a modest
rank for the whole data set, a version of the algorithm is pre-
sented in [11]. In [2], several neural networks approaches are
Training pa�ern Target pa�ern

Example 1 y1, y2, y3, y4 y5

Example 2 y2, y3, y4, y5 y6

Example 3 y3, y4, y5, y6 y7

… …

Example 36 y36, y37, y38, y39 y40

Fig. 2. Training set from series fy1; y2; . . . ; y40g when a training pattern consists of
the four previous values of its target pattern.

1

2

3

4

Q1Y1 Q1Y2 Q1Y3 Q1Y4 Q1Y5 Q1Y6 Q1Y7 Q1Y8 Q1Y9 Q1Y10
Time

H
is

to
ric

al
 v

al
ue

s

Fig. 3. Time series consisting of 40 historical values.

1

2

3

4

Q1Y1 Q1Y2 Q1Y3 Q1Y4 Q1Y5 Q1Y6 Q1Y7 Q1Y8 Q1Y9 Q1Y10
Time

H
is

to
ric

al
 v

al
ue

s Data points

historical values

input pattern

example 1: training pattern

example 1: target pattern

Fig. 4. Forecasting with GRNN: first example of the training set and input pattern.

1

2

3

4

Q1Y1 Q1Y2 Q1Y3 Q1Y4 Q1Y5 Q1Y6 Q1Y7 Q1Y8 Q1Y9 Q1Y10
Time

H
is

to
ric

al
 v

al
ue

s Data points

historical values

input pattern

example 2: training pattern

example 2: target pattern

Fig. 5. Forecasting with GRNN: second example of the training set and input pattern.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
compared for short-term load forecasting, the best results being
achieved by GRNN. In [12], time series forecasting tools available
in CRAN that can be applied automatically are analyzed; among
511
the machine learning approaches a preliminary version of the
package explained in Section 6 obtains the best results in terms
of forecast accuracy.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
3. GRNN modeling

In order to use GRNN in a time series forecasting context several
modeling decisions have to be made. This section discusses some
alternative modeling strategies. The implications of every strategy
with regard to speed and forecast accuracy are analyzed.

3.1. The smoothing parameter

The smoothing parameter, r, plays a key role in the way a time
series is forecast. The larger r the more targets with significant
weights in the output of the GRNN. The optimal value of r depends
on the series. For example, Fig. 6 shows a time series generated by
the following equation:

yt ¼ 10þ �t ð4Þ
where �t represents i.i.d. random noise. Fig. 6 also shows two pre-
dictions for the next 5 future values of the series. In this case the
model with a large r is better, because all the targets have a similar
weight and therefore the forecasts are close to the mean of the his-
torical values. On the other hand, the quarterly time series in Fig. 3
has a strong seasonal component. If the quarters fQ1;Q2;Q3;Q4g
of the next year have to be forecast, it would be desirable that the
targets with significant weights have quarters fQ1;Q2;Q3;Q4g
and not any other combination, such as fQ2;Q3;Q4;Q1g. Sec-
tion 3.3 explains how to achieve this. Fig. 7 shows how the use of
two different smoothing parameters affects the forecast of the four
quarters of the next year. When r is very large the forecasts are
close to the mean of the historical values. However, when r is small
the significant targets are fQ1;Q2;Q3;Q4g patterns and the fore-
cast captures the seasonal behavior.

As noted above, a right choice of the smoothing parameter is
crucial for forecast accuracy. Therefore, we propose that the value
of r is chosen automatically using an optimization tool that finds
the value of r that minimizes a forecasting accuracy measure on
a validation set formed by the last h historical values of the time
series, where h is the forecasting horizon. The forecasting horizon
is the number of future values to be forecast, for example, if the
forecasting horizon is 3, then the next 3 future values of the series
are predicted. To assess the forecast accuracy, when optimizing r,
rolling origin evaluation can be applied. Rolling origin evaluation
[13] is an iterative technique that tries to get the most out of the
validation set. Let us see how rolling origin works when the length
of the validation set is h. First, rolling origin assesses a test set
formed by the last h historical values using a training set consisting
of the previous historical values. This procedure is repeated h� 1
more times, moving the origin of the test set one value ahead each
9.5

10.0

10.5

0 10 20 3
Time

y

Fig. 6. Effect of smoothing parameter

512
time, see Fig. 8. This way, h one step ahead predictions can be
assessed, h� 1 two steps ahead predictions, and so on. This is a
great contrast with the fixed origin evaluation that, for a validation
set of size h, is only able to assess one prediction for each one of the
h horizons. However, rolling origin evaluation is more computa-
tionally intensive than fixed origin evaluation.

Previous works in time series forecasting using GRNN propose
other ways of choosing the smoothing parameter. For example,
in [8] r is chosen from the possible values [0.05, 0.1, 0.2, 0.3, 0.5,
0.6, 0.7] using K-fold validation. This method can be faster than
our proposal, but we consider it somewhat arbitrary to restrict
the values of such a critical parameter to this small set of possible
values. In [2] a quite sophisticated method is used that, we must
admit, we do not fully understand. In [11], in order to avoid a time
consuming selection method associated with optimizing r, three
different GRNN models are used with different smoothing param-
eters. The final forecast is the average of the forecasts of the three
models.

3.2. Multiple step ahead strategy

So far it has been assumed that when the forecasting horizon is
h, the target patterns are vectors of h consecutive historical values
and GRNN outputs a weighted combination of these targets. This is
sometimes called the MIMO—Multiple-Input Multiple-Output—
strategy for forecasting multiple steps ahead values, see [14]. The
MIMO approach is used in [2] in a context of time series forecasting
with GRNN. However, other approaches to forecast multiple values
exist [14]. In the iterative or recursive approach, used in classical
time series forecasting methodologies such as ARIMA or exponen-
tial smoothing [15], the forecast function generates only one step
ahead forecasts—using GRNN the target patterns are length-one
vectors. To predict h values the forecast function is used h times
in an iterative way, previous forecasts are used as input when his-
torical observations are not available.

Some works in time series forecasting with GRNN apply other
approaches. For example, in [11] the direct strategy [14] is used.
This strategy builds a different model to forecast each future value.
That is, if the forecasting horizon is h;h different models are built
and each model predicts a different future value.

3.3. Feature selection

In GRNN a training example consists of a pair of vectors with
historical values: a target pattern vector and a training pattern vec-
tor with previous values of the target. The length of a target vector
is determined by the multiple step ahead strategy: with the recur-
0 40

Time series

Historical values

very large σ

very small σ

in forecasting stationary series.

1

2

3

4

Q1Y1 Q1Y2 Q1Y3 Q1Y4 Q1Y5 Q1Y6 Q1Y7 Q1Y8 Q1Y9 Q1Y10 Q1Y11
Time

y
Time series

Historical values

very large σ

small σ

Fig. 7. Effect of smoothing parameter in forecasting seasonal series.

Set

training

test

Fig. 8. Training and test sets with rolling origin evaluation when h ¼ 5.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
sive and direct approach the length is one, with MIMO is h, where h
is the forecasting horizon. On the other hand, the lags used to cre-
ate the training patterns have to be selected. Next, we propose a
straightforward heuristic to select the lagged values used as train-
ing patterns. The terms lag and lagged value are used to indicate a
previous value of a historical value of a series. For example, given a
historical value, its lags or lagged values 1 to 4 are its four previous
values in the series.

The proposed heuristic works as follows:

� For seasonal time series—weekly, monthly, quarterly, . . .—the
training patterns are lagged values from 1 to s, where s is the
length of the seasonal period, that is, 7 for weekly series, 12
for monthly series, etc. These lagged values are chosen because
2.5

5.0

7.5

10.0

Q1Y1 Q1Y2 Q1Y3 Q1Y4 Q1Y5
Time

H
is

to
ric

al
 v

al
ue

s

Fig. 9. Quarterly series with strong seas

513
they help to capture a seasonal behavior. For example, in Fig. 9 a
quarterly series with a seasonal pattern is shown, the first three
quarters of a year have a similar level, quite higher than the last
quarter. If the lagged values 1 and 2 are used to generate the
training patterns, then a wrong forecast will be obtained. To
see why, suppose that the fourth quarter of the current year is
predicted. In Fig. 9 two of the closest training patterns to the
input are highlighted. Their targets will have, therefore, signifi-
cant weights. Unfortunately, the target of the first training pat-
tern is a third quarter value, an undesirable scenario because a
fourth quarter is predicted. However, if lagged values 1 to 4
were used, the closest training patterns would have a fourth
quarter as target—Fig. 10 shows two of the closest training pat-
terns to the input when lagged values 1 to 4 are used.

� If the time series is not seasonal and the partial autocorrelation
function—PACF—has significant lags, then these significant lags
are selected to build the training patterns. Although the PACF
only tests for linear relationship, this way of selecting lagged
values seems to produce good results [16].

� Finally, if the time series is not seasonal and its PACF has no sig-
nificant lags, lagged values 1 to 5 are selected.

In order to determine whether a time series is seasonal or not,
the seasonal test used by the benchmark methods of the M4 com-
petition [17] has been applied. Given a series of n values and fre-
quency s—s is 1 for yearly data, 4 for quarterly data, 12 for
monthly data and so on—the test is based on the autocorrelation
Q1Y6 Q1Y7

Data points

historical values

input pattern

training pattern

target pattern

onality and lagged values 1 and 2.

2.5

5.0

7.5

10.0

Q1Y1 Q1Y2 Q1Y3 Q1Y4 Q1Y5 Q1Y6 Q1Y7
Time

H
is

to
ric

al
 v

al
ue

s Data points

historical values

input pattern

training pattern

target pattern

Fig. 10. Quarterly series with strong seasonality and lagged values 1 to 4.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
function. The series is considered seasonal if the following rule is
fulfilled:
jACFsj > 1:645

ffi
1þ 2ðACF1 þ

Xs�1

i¼2

ACF2
i Þ

n

vuuuut ð5Þ
where ACFi is the value of the autocorrelation function for lag i.
Non-seasonal series (s ¼ 1) and series where n < 3s are not tested
and assumed as not being seasonal.

Previous works in time series forecasting with GRNN apply
other strategies for feature selection. For example, in [8] K-fold
cross-validation is used to select among the following sets of
lagged values: lag 1, lags 1 to 2, lags 1 to 3, lags 1 to 4 and lags 1
to 5. In [11] a similar strategy is applied, but the set of possible
lagged values is extended until lags 1 to 12. On the other hand,
in [2] hourly electricity demand is predicted and knowledge of
the behavior of this kind of series allows the author to select lags
1 to 24 in order to capture the hourly demand pattern.
4. Transformations

Time series forecasting methodologies often transform or pre-
process time series to improve forecast accuracy. Most of these
transformations are aimed at dealing with seasonal and trend pat-
terns. This section explains our proposal to cope with these
patterns.
0

10

20

30

0 5 10 15 20 25
Time

y

Time series

Historical values

Forecast

Fig. 11. GRNN is not suited to forecast a series with a trend.

514
4.1. Trend

Clearly, GRNN is not suited to predict a time series with a trend.
This is due to the fact that GRNN predicts a combination of histor-
ical values and the range of these values is probably different from
the range of future values. For example, in Fig. 11 a time series with
an additive trend is shown. The series has been generated by the
following equation:

yt ¼ 1:5t þ �t

where �t represents i.i.d. random noise. Fig. 11 also shows the fore-
cast of GRNN with the recursive multiple step ahead strategy. The
smoothing parameter is chosen automatically: a small value has
been selected so that only the latest historical values have signifi-
cant weights. Despite this, it is highly likely that these values are
out of the range of the actual future values.

In order to forecast a time series with a trend the following
transformation, called additive transformation, is proposed:

� Given a training example consisting of a training pattern vector
and a target pattern vector, the target vector is transformed by
subtracting the mean of the training pattern vector. This way, a
prediction is a weighted combination of transformed targets. To
back transform a prediction, the mean of the input vector is
added to it. Fig. 12 shows how the time series in Fig. 11 is pre-
dicted when this transformation has been applied. Note that
with this transformation a target represents the difference of
the target to the mean level of its training pattern. In Fig. 12
the forecast using a multiplicative transformation, which is
explained below, is also shown.
0

10

20

30

0 5 10 15 20 25
Time

y

Time series

historical values

additive forecast

multiplicative forecast

Fig. 12. Forecasting with transformed training examples.

Training
pa�erns

Target
pa�erns

1, 3 6, 7

3, 6 7, 2

6, 7 2, 9

7, 2 9, 5

Training
pa�erns

Target
pa�erns

-1, 1 4, 5

-1.5, 1.5 2.5, -2.5

-0.5, 0.5 -4.5, 2.5

2.5, -2.5 4.5, 0.5

Original examples Transformed examples

Fig. 14. Additive transformation of the training examples.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
Apart from transforming the target pattern vectors, we also sug-
gest to transform the training pattern vectors. Each training pat-
tern vector—and the input vector—is transformed by subtracting
its mean. The goal of this transformation is that an input vector
can be considered close to any training pattern vector with a sim-
ilar shape, irrespective of the level of the input and training pattern
vector. For example, Fig. 13 shows a time series with a level shift in
which the input and two training patterns are highlighted. The two
training patterns are quite similar in shape to the input. However,
the patterns have a very different mean level, so the second one is
considered quite closer than the first one taking into account that
closeness is implemented by using the Euclidean distance. Fortu-
nately, with the aforementioned transformation both training pat-
terns will be similar. This transformation is inspired by the way in
which time series are clustered by their shape [18].

Fig. 14 shows an example of transforming the training examples
of time series f1;3;6;7;2;9;5g, when the training targets are two
consecutive historical values and the training patterns two lagged
values of the targets.

Besides this transformation, we alternatively suggest a multi-
plicative transformation in which the value of a training example
is divided by the mean of its training pattern and a prediction is
back transformed by multiplying it by the mean of the input. The
additive transformation is suited to forecast series with additive
trends, such as the one in Fig. 12, in which the multiplicative trans-
formation overestimates the trend. On the other hand, time series
with a multiplicative trend are common in economics. For
instance, the following equation:

yt ¼ 10 � 1:05t þ �t ð6Þ
where �t represents i.i.d. random noise, generates a series with a
multiplicative trend. An instance of a series generated with Eq. (6)
is shown in Fig. 15, together with two forecasts for the next 4 values
of the series. In the forecasts the multiplicative and the additive
transformations have been used. Forecasts with the additive trans-
formation underestimate multiplicative trends.

Other approaches for dealing with trending series have been
developed in previous works applying GRNN to time series fore-
casting. In [11] a strategy similar to our additive transformation
is used. However, the transformation is not applied to the training
examples, but to segments in which the series are divided. In [19]
the technique of taking first differences to remove trends, used in
the ARIMA methodology [4], is applied successfully with multi-
layer perceptron. However, [11,8] also take first differences to
remove trends with GRNN models and obtain poor results. There-
fore, [8] recommends to apply no transformation to remove trends.

4.2. Seasonality

In our experience with GRNN, a right choice of the autoregres-
sive lags, as explained in Section 3.3 with the heuristic strategy,
2

4

6

8

0 10 20 30 40
Time

H
is

to
ric

al
 v

al
ue

s

Data points

historical values

input

training pattern

Fig. 13. Time series with a level shift.

515
together with a proper selection of the smoothing parameter is
enough to deal with time series with seasonal patterns, so we do
not propose any transformation or preprocessing to cope with sea-
sonal series.

Nevertheless, previous works in time series forecasting with
GRNN apply specific strategies to deal with seasonal patterns. For
example, in [8] seasonal differences are taken, as in the seasonal
ARIMA model [4]. Another common approach is to decompose
the time series into a seasonal and a trend-remainder component.
The model is trained with the trend-remainder component and
forecasts are generated for this component, then these forecasts
are back transformed by adding the seasonal component. There
are several ways of decomposing a time series into seasonal and
trend-remainder component [20]. In [11] seasonality is dealt using
this kind of decomposition. In [2,21] an original approach is pro-
posed in which a different model is used to forecast each different
season; the targets of a model predicting a given season only con-
tain values from that season.

5. Experiments

In this section we experiment with the different strategies pro-
posed in previous sections. As data sets the 111 time series from
the NN3 competition [10] and the 1428 monthly time series from
the M3 competition [9] have been used. As in the original compe-
titions, for both data sets the next 18 future values of each time
series are forecast.

To assess forecast accuracy the symmetric mean absolute per-
centage error—sMAPE—has been chosen. The reason for this choice
is that sMAPE is the main forecasting accuracy measure applied in
time series competitions. Given a time series whose next h future
values are predicted, sMAPE is computed as:

sMAPE ¼ 1
h

Xh
t¼1

yt � f tj j
jyt jþjf t j

2

100 ð7Þ

where yt and f t are the actual future value and forecast for horizon t
respectively. Given a data set, such as the time series of the NN3
competition, the sMAPE for every time series is computed using
10

15

20

25

30

0 5 10 15 20 25
Time

y

Time series

historical values

additive forecast

multiplicative forecast

Fig. 15. Foresting a time series with multiplicative trend.

Table 2
Comparison of strategies for multiple step ahead forecasts.

NN3 monthly M3

MIMO 17.7% (33) 18.5% (453)
Recursive 16.6% (61) 15.5% (851)
Direct 20.0% (45) 17.5% (582)

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
Eq. (7) and the global mean sMAPE is computed as the mean of the
sMAPE across all its series. sMAPE is similar to MAPE—it represents
an absolute percentage error—and it was developed because MAPE
puts a heavier penalty on negative errors than on positive errors
[22]. Because sMAPE is an absolute percentage error, the smaller
the sMAPE value is the more accurate the forecast is.

In the next subsections the experimental results are presented.

5.1. The smoothing parameter

We have done some experimentation to see how forecast accu-
racy is affected by the use of rolling or fixed origin evaluation in the
optimization of the smoothing parameter as proposed in Sec-
tion 3.1. As optimizer the function optim from the stats package
in R has been used. This function implements several optimization
algorithms, from which the well-known Brent optimization algo-
rithm [23] has been selected.

Also, we have implemented the straightforward strategy pro-
posed in [8] in which the smoothing factor is selected among the
fixed set of possible values [0.05, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7]. From
this set, the value obtaining the best accuracy on a validation set
is chosen as smoothing factor.

The result of this comparison in terms of global mean sMAPE is
shown in Table 1—between parenthesis the time needed, in sec-
onds, to forecast all the data set. Rolling origin evaluation seems
to choose a smoothing parameter with a better forecast accuracy,
although the more complex evaluation process slows down the
forecasts. The strategy proposed in [8] is very fast, but as expected
it produces the worst forecasts. In this comparison the strategy for
forecasting several values is MIMO—Section 3.2—and the lagged
values used in the training patterns are selected with the heuristic
explained in Section 3.3.

5.2. Multiple step ahead strategies

In this section an empirical comparison of the strategies for
forecasting multiple future values described in Section 3.2 has
been done. In this comparison the smoothing parameter is selected
with rolling origin evaluation. For MIMO and the recursive strategy
the previous values used as training patterns are selected with the
heuristic explained in Section 3.3. For the direct strategy this
heuristic cannot be applied, in this case the first 12 consecutive
previous values available are used. The forecast accuracy is shown
in Table 2, the recursive strategy produces the best results. How-
ever, it is slightly slower because the forecasts are generated in
an iterative way.

5.3. Feature selection

In order to assess the effectiveness of the heuristic for feature
selection proposed in Section 3.3, it has been compared to two
classical feature selection approaches: forward selection and back-
ward elimination [24]. These approaches use the last h values of
the time series, where h is the forecasting horizon, as a validation
set using rolling origin evaluation. Also, both approaches consider
as possible features lagged values from 1 to 12. It must be noted
that forward selection and backward elimination can select any
combination of lags; specifically the lags do not have to be consec-
Table 1
Comparison of strategies for selecting the smoothing parameter.

NN3 monthly M3

Rolling origin 17.7% (33) 18.5% (453)
Fixed origin 18.4% (4) 19.4% (56)

Fixed set of values 20.8% (2) 25.3% (24)

516
utive. Furthermore, the comparison includes the strategy applied
in [11] in which the set of consecutive lags: lag 1, lags 1 to 2, lags
1 to 3, . . ., lags 1 to 12 are considered using rolling origin evalua-
tion. That is, the combination of consecutive lags that obtains the
best forecast accuracy on a validation set is chosen.

Table 3 shows a comparison of the four approaches with regard
to sMAPE and computing time as previously. In this comparison
the smoothing parameter has been optimized using rolling origin
evaluation and the recursive approach is applied for multiple step
ahead forecasts. In terms of forecast accuracy all the strategies
seem to be similar. However, the proposed heuristic is much faster.
Forward selection and backward elimination are remarkably slow.

5.4. Transformations: trend

In this section we experiment with the application of the addi-
tive and multiplicative transformations proposed in Section 4. In
Table 4 the positive effect of these transformations on the forecast
accuracy across the data sets used in previous experiments can be
observed. In this comparison the lagged values have been selected
using the heuristic explained in Section 3.3 and the smoothing
parameter is chosen applying rolling origin evaluation. As multiple
step ahead strategies MIMO and the recursive approach are used.
For both data sets the forecast accuracy is improved.

In order to shed some light on whether taking first differences is
useful in dealing with trending series when using GRNN we have
done some experimentation. Firstly, to determine whether a time
series has a trend the ndiffs function of the forecast package [25]
has been used. The function ndiffs uses the KPSS unit root test
[26] to determine the number of differences required for a time
series to be made stationary. This test has considered that 61 series
from the NN3 competition and 349 from the monthly series of the
M3 competition have a trend. For these series we have compared
three approaches: taking first differences, applying the additive
transformation and applying no transformation. As strategy for
forecasting multiple step ahead values the recursive approach
has been used. The smoothing parameter has been optimized using
the rolling origin technique and the lagged values are selected
using the heuristic proposed in Section 3.3. The result of this com-
parison in terms of sMAPE is shown in Table 5. In line with previ-
ous works [8,11] it seems that taking first differences is not
effective in dealing with trending series when GRNN is used.

5.5. Transformations: seasonality

As described in Section 4, our proposal to deal with seasonality
is to select the lagged values 1 to s, where s is the length of the sea-
sonal period, and to choose a suitable—possibly low—smoothing
parameter. In this section we compare this strategy with two com-
Table 3
Comparison of feature selection approaches.

NN3 monthly M3

Heuristic technique 16.6% (61) 15.5% (851)
Forward selection 16.3% (2234) 15.6% (29370)

Backward elimination 16.8% (3858) 15.6% (53474)
Best lags from: 1, 1 to 2, . . ., 1 to 12 16.6% (640) 15.4% (8907)

Table 4
Transformation versus no transformation.

NN3 monthly M3

MIMO, no transformation 17.7% (33) 18.5% (453)
MIMO, multiplicative transformation 15.9% (54) 14.9% (650)

MIMO, additive transformation 15.6% (37) 15.5% (495)
Recursive, no transformation 16.6% (61) 15.5% (851)

Recursive, multiplicative transformation 16.1% (94) 14.4% (1189)
Recursive, additive transformation 15.9% (71) 14.4% (976)

Table 5
First differences versus other approaches.

NN3 monthly M3

First differences 22.7% 26.7%
Additive transformation 16.2% 17.8%

No transformation 16.7% 18.4%

Table 7
Transformation strategies compared with top NN3 contenders.

ID Method sMAPE

B09 Wildi 14.84%
B07 Theta 14.89%
C27 Echo state networks 15.18%
B03 ForecastPro 15.44%
- Combination 15.52%
- MIMO additive 15.61%
- Recursive additive 15.90%

B16 DES 15.90%
- MIMO multiplicative 15.98%

B17 Comb S-H-D 15.93%
B05 Autobox 15.95%
- Recursive multiplicative 16.12%

C03 Linear model + GA 16.31%
B14 SES 16.42%
B15 HES 16.49%
C46 Regression tree ensemble 16.55%
C13 k-NN (D’yakonov) 16.57%

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
mon approaches: series decomposition and seasonal differences.
There are several ways of decomposing a time series in seasonal
and trend-remainder components [27]. We have selected the clas-
sical multiplicative decomposition as implemented by the bench-
mark methods of the M4 competition [17]. The three approaches
has been applied to the 58 series from the NN3 competition and
the 778 monthly series from the M3 competition that have passed
the seasonality test of Eq. (5). The result of this comparison in
terms of forecast accuracy assessed with sMAPE is shown in
Table 6. In this comparison the recursive approach has been
applied to multiple step ahead forecasts and the additive transfor-
mation. The classical multiplicative decomposition obtains slightly
better results than our proposal. On the other hand, the method of
taken seasonal differences achieves very poor results.

To end this experimental section Table 7 compares the
approaches in Table 4 that use transformations with the top con-
tenders from the NN3 competition, which was aimed at assessing
the forecast accuracy of machine learning methods. In this table,
the letter B in the ID column stands for statistical benchmark
and C for computational intelligence method. As can be noted,
our transformation approaches are only beaten by one computa-
tional intelligence method. The result of combining these four
approaches, by averaging their forecasts, is also shown in Table 7,
achieving an sMAPE of 15.52%, very close to the computational
intelligence winner. In this competition the sMAPE of the GRNN
contender was 18.58%.

The range of the sMAPE for the GRNNmodel using the recursive
strategy and the additive transformation when predicting the ser-
ies of the NN3 data set varies between 1.8%—see Fig. 16—and
71.8%—Fig. 17. Clearly, the series in Fig. 17 is complex and our
model is not able to capture its underlying behavior. Also, Fig. 18
shows how GRNN can accurately predict a time series with a sea-
sonal behavior, in this case the sMAPE is 3.35%.
6. The tsfgrnn package

This section describes the tsfgrnn R package for time series
forecasting using GRNN, which implements the different modeling
Table 6
Comparison of approaches for coping with seasonality.

NN3 monthly M3

Classical multiplicative decomposition 12.9% 10.2%
Our proposal 13.3% 10.6%

Seasonal differences 19.2% 14.4%

517
and transforming approaches proposed above. To install the pack-
age from CRAN the install.packages command can be used at
the console: > install.packages("tsfgrnn")

As a first example of using the package see Fig. 19. The library

function loads the namespace of the package. Next, the
grnn_forecasting function is applied to forecast a time series.
This is the most important function in the package, requiring at
least two parameters: a time series and a forecasting horizon.
grnn_forecasting builds a GRNN model using the historical val-
ues of the time series and predicts the next h future values of the
series, where h is the forecasting horizon. The function returns
an S3 object which information about the fitted model and the
forecast. In the example, pred$prediction holds a time series
with the forecast. A plot with the historical values and the forecast
can be generated using the functions autoplot and plot—Fig. 20
shows the plot produced by autoplot.

In the previous call to grnn_forecasting only the two
mandatory arguments were set. However, grnn_forecasting
has optional arguments to control the modeling and transforming
strategies. These arguments can be consulted, as any R function,
with the help command and are listed next:

� lags: an integer vector with the lagged values used to create
the training patterns. If unspecified, the heuristic explained in
Section 3.3 is applied. It is also possible to use a character to
specify forward selection or backward elimination.

� sigma: a numeric value for the smoothing parameter. If
unspecified, the value is selected optimizing a forecast accuracy
measure on an evaluation set consisting of the last h values of
the time series. Rolling origin evaluation is used to assess the
forecast accuracy on the evaluation set, but it is also possible
to select a fixed origin evaluation.

� msas: the multiple step ahead strategy: recursive (the default)
or MIMO.

� transform: how the training examples are transformed: addi-
tive (the default), multiplicative or no transformation.

In the code snippet shown in Fig. 21 the grnn_forecasting
function is invoked to forecast the next two future values of an
artificial time series. In this case, the lags parameter has been
used to set the training patterns as lagged values 1 and 2. Also,
the MIMO strategy for multiple step ahead forecasting is selected
and no transformation for the training examples. It is possible to
consult information about the fitted GRNN model. For example,
in the code snippet the smoothing parameter, which is selected
automatically, is printed. The function grnn_examples returns a

5000

5500

6000

5 10
Time

va
lu

es

Data points

historical values

forecast

actual values

Fig. 16. Historical values and forecasts for series 77 with an sMAPE of 1.8% (best forecast).

0

10000

20000

30000

40000

5 10
Time

va
lu

es

Data points

historical values

forecast

actual values

Fig. 17. Historical values and forecasts for series 93 with an sMAPE of 71.8% (worst forecast).

3000

4000

5000

2.5 5.0 7.5 10.0 12.5
Time

va
lu

es

Data points

historical values

forecast

actual values

Fig. 18. Historical values and forecasts for seasonal series 68 of the NN3 competition with an sMAPE of 3.35%.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521

518

Fig. 19. Forecasting a time series with tsfgrnn.

300

600

900

1200

1960 1970 1980
Time

Time series

Original

Forecast

Fig. 20. Example of plot generated by autoplot.

5

10

2.5 5.0 7.5
Time

Data point

Training pattern

Training target

Input

Forecast

Fig. 22. plot_example shows a training example.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
data frame with the training examples. Also, the input and the
weights used in the forecast can be seen with the function
grnn_weights. In this case, the input is the vector ð11;13Þ—the
last two historical values—and the only target with a significant
weight is the last one. The function plot_example plots one of
the training examples; for instance, in the snippet code the call
plot_example(pred, 1) generates a plot showing the training
example with the highest weight, see Fig. 22.

Finally, in order to assess the forecast accuracy of a GRNN
model the function rolling_origin can be applied. Fig. 23 shows
a code snippet using this function. In this code snippet,
grnn_forecasting is used first to fit a model. Then, rollin-
g_origin uses this model to assess its forecast accuracy on the
Fig. 21. Consulting the for

519
last h values of the time series using rolling origin evaluation.
The code snippet shows how the different test sets, predictions
and forecast errors can be consulted. Each row of the data frames
represents a different test set. It is also possible to consult some
forecasting accuracy measures for the whole test set or for every
forecasting horizon. The generic function plot allows us to see a
test set and its forecast. For example, the last command in the code
snippet generates the plot in Fig. 24.
7. Conclusions

Generalized regression neural networks can be quickly trained,
so they are very suitable for developing a fast time series forecast-
ing tool. Nevertheless, to achieve accurate predictions several fac-
tors have to be taken into account. A proper selection of the
smoothing parameter is crucial to capture different patterns of a
series. In this sense, our experimentation suggests to select this
parameter optimizing a forecast accuracy measure on an evalua-
tion test formed by the last historical values of the series. To assess
forecast accuracy rolling origin evaluation seems to produce better
results than fixed origin evaluation, though it needs more compu-
tational resources.

Forecast accuracy is also affected by feature selection. In this
work, a straightforward heuristic technique for selecting the
autoregressive lagged values has been proposed. This technique
helps to capture the seasonal behavior of a time series.
ecast of a time series.

Fig. 23. Assessing forecast accuracy with function rolling_origin.

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
Generalized regression neural networks are not able to properly
forecast a time series with a trend. In this regard, an additive and a
multiplicative transformation of the training examples have been
proposed. Experimental results seem to indicate that these trans-
formations improve the forecast accuracy of GRNN.

All of the modeling and transforming strategies proposed in this
paper have been incorporated into the tsfgrnn R package, an
open source software that is available through CRAN, the official
repository of R packages.

CRediT authorship contribution statement

Francisco Martínez: Conceptualization, Methodology, Soft-
ware, Validation, Investigation, Data curation, Visualization. Fran-
cisco Charte: Conceptualization, Software, Writing - review &
editing.María Pilar Frías: Conceptualization, Methodology, Formal
Time

5 10 15 20

5
10

15
20

Fig. 24. A test set and its forecast.

520
analysis, Writing - review & editing. Ana María Martínez-Rodrí
guez: Methodology, Formal analysis, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Funding: This work was supported by the Spanish Ministry of
Science, Innovation and Universities [project PID2019-
107793 GB-I00]. Funding for open access charge: Universidad de
Jaén / CBUA.

References

[1] K. Kim, Financial time series forecasting using support vector machines,
Neurocomputing 55 (1) (2003) 307–319, https://doi.org/10.1016/S0925-2312
(03)00372-2.

[2] G. Dudek, Neural networks for pattern-based short-term load forecasting: A
comparative study, Neurocomputing 205 (2016) 64–74, https://doi.org/
10.1016/j.neucom.2016.04.021.

[3] R. Araújo, A. Oliveira, S. Meira, On the problem of forecasting air pollutant
concentration with morphological models, Neurocomputing 265 (2017) 91–
104, https://doi.org/10.1016/j.neucom.2017.01.107.

[4] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and
Control, 4th Edition., John Wiley & Sons, Hoboken, 2008.

[5] P. Montero-Manso, G. Athanasopoulos, R.J. Hyndman, T.S. Talagala, FFORMA:
Feature-based forecast model averaging, International Journal of Forecasting
36 (1) (2020) 86–92, https://doi.org/10.1016/j.ijforecast.2019.02.011.

[6] D.F. Specht, A general regression neural network, Trans. Neur. Netw. 2 (6)
(1991) 568–576, https://doi.org/10.1109/72.97934.

[7] D. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive
networks, Complex Systems 2 (1988) 321–355.

https://doi.org/10.1016/S0925-2312(03)00372-2
https://doi.org/10.1016/S0925-2312(03)00372-2
https://doi.org/10.1016/j.neucom.2016.04.021
https://doi.org/10.1016/j.neucom.2016.04.021
https://doi.org/10.1016/j.neucom.2017.01.107
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0020
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0020
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0020
https://doi.org/10.1016/j.ijforecast.2019.02.011
https://doi.org/10.1109/72.97934
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0035
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0035

F. Martínez, F. Charte, María Pilar Frías et al. Neurocomputing 491 (2022) 509–521
[8] N. Ahmed, A. Atiya, N.E. Gayar, H. El-Shishiny, An empirical comparison
of machine learning models for time series forecasting, Econometric
Reviews 29 (5–6) (2010) 594–621, https://doi.org/10.1080/07474938.2010.
481556.

[9] S. Makridakis, M. Hibon, The M3-Competition: results, conclusions and
implications, International Journal of Forecasting 16 (4) (2000) 451–476,
https://doi.org/10.1016/S0169-2070(00)00057-1.

[10] S.F. Crone, M. Hibon, K. Nikolopoulos, Advances in forecasting with neural
networks? empirical evidence from the NN3 competition on time series
prediction, International Journal of Forecasting 27 (3) (2011) 635–660, https://
doi.org/10.1016/j.ijforecast.2011.04.001.

[11] W. Yan, Toward automatic time-series forecasting using neural networks.,
IEEE Trans. Neural Netw. Learning Syst. 23 (7) (2012) 1028–1039. doi:10.1109/
TNNLS.2012.2198074.

[12] F. Martínez, F. Charte, A. Rivera, M. Frías, Automatic time series forecasting
with GRNN: A comparison with other models, in: International Work-
Conference on Artificial Neural Networks, Springer, 2019, pp. 198–209.
doi:10.1007/978-3-030-20521-8_17.

[13] L.J. Tashman, Out-of-sample tests of forecasting accuracy: an analysis and
review, International Journal of Forecasting 16 (4) (2000) 437–450, https://doi.
org/10.1016/S0169-2070(00)00065-0.

[14] S. Ben Taieb, G. Bontempi, A.F. Atiya, A. Sorjamaa, A review and comparison of
strategies for multi-step ahead time series forecasting based on the NN5
forecasting competition, Expert Syst. Appl. 39 (8) (2012) 7067–7083.
doi:10.1016/j.eswa.2012.01.039.

[15] E.S. Gardner, Exponential smoothing: The state of the art – part ii,
International Journal of Forecasting 22 (4) (2006) 637–666, https://doi.org/
10.1016/j.ijforecast.2006.03.005.

[16] F. Martínez, M.P. Frías, M.D. Pérez, A.J. Rivera, A methodology for
applying k-nearest neighbor to time series forecasting, Artificial
Intelligence Review 52 (3) (2019) 2019–2037, https://doi.org/10.1007/
s10462-017-9593-z.

[17] S. Makridakis, E. Spiliotis, V. Assimakopoulos, The M4 Competition: 100,000
time series and 61 forecasting methods, International Journal of
Forecasting 36 (1) (2020) 54–74, https://doi.org/10.1016/j.ijforecast.2019.
04.014.

[18] Y. Kang, E. Spiliotis, F. Petropoulos, N. Athiniotis, F. Li, V. Assimakopoulos, Déjà
vu: A data-centric forecasting approach through time series cross-similarity,
Journal of Business Research doi:10.1016/j.jbusres.2020.10.051.

[19] M. Qi, G.P. Zhang, Trend time–series modeling and forecasting with neural
networks, IEEE Transactions on Neural Networks 19 (5) (2008) 808–816,
https://doi.org/10.1109/TNN.2007.912308.

[20] R.B. Cleveland, W.S. Cleveland, J.E. McRae, I. Terpenning, STL: A Seasonal-Trend
Decomposition Procedure Based on Loess, Journal of Official Statistics 6 (1)
(1990) 3–73.

[21] F. Martínez, M.P. Frías, M.D. Pérez-Godoy, A.J. Rivera, Dealing with seasonality
by narrowing the training set in time series forecasting with kNN, Expert
Systems with Applications 103 (2018) 38–48, https://doi.org/10.1016/j.
eswa.2018.03.005.

[22] R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy,
International Journal of Forecasting 22 (4) (2006) 679–688, https://doi.org/
10.1016/j.ijforecast.2006.03.001.

[23] R. Brent, Algorithms for minimization without derivatives, Prentice-Hall, 1973.
[24] A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary

Algorithms, Springer-Verlag, New York Inc, Secaucus, NJ, USA, 2002.
[25] R.J. Hyndman, Y. Khandakar, Automatic Time Series Forecasting: The forecast

Package for R, Journal of Statistical Software 27 (3) (2008) 1–22, https://doi.
org/10.18637/jss.v027.i03.

[26] D. Kwiatkowski, P.C. Phillips, P. Schmidt, Y. Shin, Testing the null hypothesis of
stationarity against the alternative of a unit root: How sure are we that
economic time series have a unit root?, Journal of Econometrics 54 (1) (1992)
159–178, https://doiorg/10.1016/0304-4076(92)90104-Y.

[27] J. Ord, R. Fildes, N. Kourentzes, Principles of Business Forecasting–2nd Ed,
wessex, Incorporated, 2017.
521
Francisco Martínez. Assistant professor with the Com-
puter Science Dept. of the University of Jaén, Spain. He
received his B.S. degree in Computer Science from the
University of Granada and his Ph.D. from the University
of Jaén. He has worked in the fields of parallel pro-
gramming and computer graphics. Currently, his main
research topic is time series forecasting.
Francisco Charte. T. Eng. Computer Science (2008) and
B. Eng. Computer Science (2010) from the Universidad
de Jaén, with Extraordinary Award in both degrees and
1st National Award for Excellence in Academic Perfor-
mance from the MECD (2010). M.Sc. Soft Computing and
Computational Intelligence (2011) and PhD from the
Universidad de Granada (2015).
He is currently an Assistant Professor with the Com-
puter Science Dept., Universidad de Jaén, Spain. He is
the author of more than 130 books, including the title
”Multilabel Classification. Problem analysis, metrics and
techniques” published by Springer, as well as author of

25 JCR research papers and several dozen contributions to international confer-
ences. His main research interests include multilabel learning, imbalanced and
high-dimensionality problems and representation learning through deep learning

techniques.

María P. Frías. Assistant professor with the Statistics
and Operation Research Dept. at the University of Jaén
(Spain). She received her B.S. degree in Statistical Sci-
ences and Techniques from the University of Granada
and her Ph.D. from the University of Jaén. Her research
interests include topics like spatial statistics, long-range
dependence random field models and parameter esti-
mation of spatiotemporal random field models.
Ana María Martínez-Rodríguez. Assistant professor in
the Department of Statistics and Operational Research
at University of Jaén (Spain). She has a PhD in Mathe-
matics (University of Jaén, Spain). Her current research
interests include Regression Models for Count Data,
Probabilistic Distributions and Applied Statistics.

https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.1016/S0169-2070(00)00057-1
https://doi.org/10.1016/j.ijforecast.2011.04.001
https://doi.org/10.1016/j.ijforecast.2011.04.001
https://doi.org/10.1016/S0169-2070(00)00065-0
https://doi.org/10.1016/S0169-2070(00)00065-0
https://doi.org/10.1016/j.ijforecast.2006.03.005
https://doi.org/10.1016/j.ijforecast.2006.03.005
https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/10.1007/s10462-017-9593-z
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://doi.org/10.1109/TNN.2007.912308
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0100
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0100
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0100
https://doi.org/10.1016/j.eswa.2018.03.005
https://doi.org/10.1016/j.eswa.2018.03.005
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0115
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0115
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0120
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0120
http://refhub.elsevier.com/S0925-2312(21)01866-X/h0120
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.1016/0304-4076(92)90104-Y

	Strategies for time series forecasting with generalized regression neural networks
	1 Introduction
	2 Time series forecasting with GRNN
	2.1 Application of GRNN regression to time series forecasting

	3 GRNN modeling
	3.1 The smoothing parameter
	3.2 Multiple step ahead strategy
	3.3 Feature selection

	4 Transformations
	4.1 Trend
	4.2 Seasonality

	5 Experiments
	5.1 The smoothing parameter
	5.2 Multiple step ahead strategies
	5.3 Feature selection
	5.4 Transformations: trend
	5.5 Transformations: seasonality

	6 The tsfgrnn package
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

