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High dimensionality is an issue that affects most classification algorithms. This factor
implies that the predictive performance of many traditional classifiers decreases consider-
ably as the number of features increases. Therefore, there are numerous proposals that try
to mitigate the effects of this issue. This study proposes ClEnDAE, a new classifier based on
ensembles whose components incorporate denoising autoencoders (DAEs) to reduce the
dimensionality of the input space. On the one hand, the use of ensembles improves the pre-
dictive performance by using several components that work jointly. On the other hand, the
use of DAEs allows a new higher-level, smaller-sized feature space to be generated, reduc-
ing high dimensionality effects. Finally, an experimentation is conducted with the goal of
evaluating the behavior of ClEnDAE. The first part of the test compares the performance of
ClEnDAE to a model based on basic DAE and to the original untreated data. The second part
analyzes the results of ClEnDAE and other traditional methods of dimensionality reduction
in order to determine the improvement achieved with the proposed algorithm. In both
parts of the experimentation, conclusions show that ClEnDAE offers better predictive per-
formance than the other analyzed models. The main advantage of the ClEnDAE method is
the combination of the potential of the ensemble-based methodology, where several com-
ponents work in parallel, and DAEs, which generate new low-dimensional features that
provide more relevant information. Therefore, the classification performance is better than
with other classic proposals.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Classification is one of the best known and most studied tasks in machine learning. Essentially, a classifier analyzes a ser-
ies of training instances to extract relevant information that allows it to predict properties of new patterns. Over the years, a
large number of proposals that deal with this problem have emerged. These methods are based on different methodologies
associated with their structure and internal functioning [1].

The wide use of classification methods that are applied to very diverse data causes new problems and challenges asso-
ciated with the properties of these data. One of the issues that affects most of the classification systems is the high dimen-
sionality of the aforementioned data [2]. In recent years, this factor has increased considerably due to the continuous
evolution of information collection systems. At present, a large number of tools allow huge amounts of information to be
generated, stored and managed, making the task of analyzing them more relevant as a result. In this context, the perfor-
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mance of a significant number of traditional classification algorithms is negatively affected by the high dimensionality of the
data [3]. The main reason for this behavior lies in the curse of dimensionality [4]. Fundamentally, this phenomenon is related
to the decrease in performance of traditional classifiers as the dimension of the input data increases [5]. Hence, developing
new models or adapting traditional algorithms to deal with this problem is crucial.

In regard to this matter, some proposals address data dimensionality reduction. Essentially, the goal is to reduce dimen-
sionality while preserving most of the relevant information. In this way, classifier performance improves when working with
fewer input features [6]. Some of the most well-known traditional dimensionality reduction methods are: Principal Compo-
nent Analysis (PCA) [7], Linear Discriminant Analysis (LDA) [8], Isometric feature mapping (ISOMAP) [9] and Locally Linear
Embedding (LLE) [10], among others [11].

Lately, a new methodology, known as Feature Fusion, has emerged [12]. The constant growth in the dimensionality of the
data and the need to work with multimedia data have influenced the appearance of this new concept [13]. The main objec-
tive of Feature Fusion is to generate new features based on the information provided by the whole set of original character-
istics. In this manner, relevant input information is used and redundant or irrelevant data is discarded. Some of the most
popular methods that apply Feature Fusion are based on Deep Learning (DL) [14]. For instance, Convolutional Neural Net-
works (CNNs) [15] are able to identify complex patterns in images, and Autoencoders (AEs) [16] concentrate all the infor-
mation needed to reconstruct the patterns in a few high-level features. These types of algorithms have proven to offer
good results in many fields of application, which implies that their use has significantly increased [17].

In relation to dimensionality reduction, AEs are the most used models due to their method of operation [16]. In fact, there
are several studies that show the improvement of predictive performance and execution time when using AEs to reduce
input data dimensionality [12,18,19]. The AEs rely on nonlinear relationships of the input data to obtain a new representa-
tion. This is the main distinguishing feature when comparing with traditional methods such as PCA, LDA, LLE or ISOMAP,
which are based on input features linear relationships.

In addition, using ensembles implies the integration of a set of components that solve the same task in a single predictive
model. Some research shows that these components offer better results when working together than when used in isolation
[20,21]. Furthermore, there are other studies that relate the use of ensembles to DAEs [22]. These reasons, among others fur-
ther extended in Section 2.5, justify the use of ensembles in this proposal.

Specifically, the Classifier Ensemble DAE (ClEnDAE) model is proposed in this work. This algorithm is based on an ensem-
ble of Denoising AEs (DAEs) to reduce the dimensionality of the input space. The new variables generated by ClEnDAE in the
feature fusion phase can be used as a new representation of the input data and serve as input for traditional data mining
methodologies. In the second phase of ClEnDAE, different algorithms can be used to classify. Concretely, the possible clas-
sifiers are k-Nearest Neighbors (kNN) [23], Support Vector Machines (SVM) [24], Multi-Layer Perceptron (MLP) [25] and
C4.5 [26]. The ClEnDAE method is parameterized so as to select the desired classifier from the previous options. Based on
the results of these methods, it is possible to evaluate the quality of the features generated by the proposed model. Essen-
tially, classifiers are applied using the new representation of the input generated by the different components of the ensem-
ble. Finally, the information provided by them is combined to generate the final response of the model. Fig. 1 shows this
operation schematically.

In summary, ClEnDAE merges the information provided by a certain number of models in order to classify new data. This
method addresses dimensionality reduction from different perspectives. Firstly, each component is trained with a subset of
the original examples and features randomly sampled with replacement and a new representation is then obtained through
the use of DAEs. This process allows each model to face dimensionality reduction using DAEs before classifying with four
classical algorithms: kNN, SVM, MLP and C4.5.

More precisely, the main contributions of this paper are: 1) the development of a new classification model, ClEnDAE,
based on ensembles and DAEs to reduce input dimensionality, 2) a thorough experimentation to verify the behavior of
the proposed model against traditional methods and a model based on basic DAE, 3) a comparison between ClEnDAE and
four classic models of dimensionality reduction, such as PCA, LDA, ISOMAP and LLE, and 4) a general conclusion on how
to use and operate the proposed algorithm depending on the characteristics of the input data.
Fig. 1. ClEnDAE scheme.
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Lastly, the experimentation developed to verify the proper functioning of the ClEnDAE algorithm, based on 20 datasets,
shows significant improvements over traditional classification methods. Additionally, ClEnDAE achieves better performance
in most analyzed cases than traditional dimensionality reduction algorithms, for instance, PCA, LDA, ISOMAP and LLE. These
data show the value of ClEnDAE when facing the task of dimensionality reduction, considerably improving predictive per-
formance if compared to classical methods.

In summary, the main advantage of this method is that it combines the power of ensemble-based methodology and DAEs
that generate new characteristics from the input data with the most relevant information to, subsequently, use that infor-
mation to carry out the classification. Therefore, the performance of this method is better than that of other traditional
proposals.

The article is organized as follows. In Section 2, main theoretical concepts related to the model developed in this paper are
presented. Section 3 details the proposed ClEnDAE method. In Section 4, the experimental framework is presented and the
obtained results are analyzed. Finally, Section 5 presents the general conclusions of this study.

2. Preliminaries

This section introduces all theoretical concepts related to ClEnDAE. SubSection 2.1 describes the problem of high dimen-
sionality and some traditional proposals that tackle it. SubSection 2.2 presents the traditional classifiers that have been
applied, as well as the family of algorithms they belong to. In addition, the concept of AE and its inner workings are analyzed
in SubSection 2.3. The AE model used in this paper, DAE, is outlined in SubSection 2.4. Finally, the ensemble methodology is
detailed in Section 2.5.

2.1. Dimensionality reduction methods

A common characteristic of any classification methodology, like the four presented in Section 2.2, is that its performance
is hindered by input data complexity. These algorithms generally use data from very diverse sources and varied scopes.
Lately, growing dimensionality is a common factor in these data [27]. This property is one of the traits that negatively affects
predictive performance in many classifiers, due to the phenomenon known as the curse of dimensionality. This factor refers
to the decrease in classifier performance from a certain high number of features onward. For this reason, it is necessary to
generate a new feature space of lower dimensionality, by selecting the most relevant attributes or by creating new features
that aggregate the most important information.

Furthermore, another related effect implies that a large number of redundant features in a high dimensional space will
impact the performance of a classifier. This will occur when using a limited number of training instances, and is known as the
Hughes phenomenon. In many cases, models need to increase the number of training examples to generate acceptable clas-
sification results. This subsection presents some proposals that try to mitigate these effects.

There are different paradigms that address the dimensionality reduction task. Fig. 2 summarizes the paradigms described
below. Here are some of the most important:

� Feature selection: This type of method selects a subset of features of the input data. This process does not modify the orig-
inal features, but rather selects those considered most relevant. The disadvantage of some basic methods is that they treat
variables independently, without taking into account information that is provided by the complete set [28].
Fig. 2. Dimensionality reduction methods.
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� Feature extraction: These algorithms try to generate a new representation for input data with lower dimensionality [29].
Doing so usually involves performing linear data transformations. This technique will depend on the input data, as well as
the subsequent use of the generated information. Some of the most popular methods within this methodology are LDA,
PCA, ISOMAP and LLE. Another technique which can carry out this task is sparse dictionary learning or sparse coding.
These methods aim to generate a new sparse representation of the input data by using linear combinations of them. This
methodology is applied in many fields, compression sensing being one of the most important.
� Feature fusion: The increasing use of multimedia data in recent years has led to the emergence of a new dimensionality
reduction approach, known as Feature Fusion [13]. The main objective is to generate a new space of features that contains
the most relevant information of the input space, discarding irrelevant and unuseful information. Therefore, the use of
new features in later stages improves the performance of models such as classifiers. In this context, one of the most pop-
ular techniques to develop algorithms is DL, specifically AEs.

The aforementioned methods that address the dimensionality reduction task are used in a wide variety of application
domains. Some of them are: cyber security, data visualization, time series, big data analytics and real time decision support
systems, among others.

As indicated before, there are a large number of models that tackle dimensionality reduction. However, AE-based feature
fusion models have proven to be very efficient and offer good performance [3,12]. This is why the ClEnDAE model is based on
DAE, a specific type of AE, in orderto mitigate the effects of high dimensionality. SubSection 2.3 introduces the concept of AE
and SubSection 2.4 presents the term DAE.

2.2. Classifiers

Classification is among the most important tasks in the machine learning field. From four of the best known and most
widely used paradigms, four classifiers will be considered later on. Nonetheless, there are many other types of methods,
for example, rule-based systems, deductive logic programming and genetic algorithms, among others. Next, the four families
of classifiers and the selected methods are described. Fig. 3 shows a taxonomy of these methods.

� Instance-Based Learning (IBL): The main characteristic of this type of methods is that they do not build a model from the
training data, that is, it is a lazy paradigm. These algorithms use the information provided by the training instances to
directly infer the prediction corresponding to each new example. Normally, these algorithms base the response on a
specific subset of the training space that is related to the new instance [30].
In this context, one of the most widespread algorithms is kNN. It is a nonparametric method used for different types of
tasks, including classification or regression [23]. kNN is a lazy method that, as stated above, does not need to build a
model to generate the prediction [31]. Instead, kNN uses the information provided by the k instances closest to the
new example. The distances are calculated in the n-dimensional space generated by the input features. This way, the out-
put provided will be the most common among the neighboring k.
Fig. 3. Classification methods.
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� Support Vector Machines (SVMs): These methods are based on the spatial representation of the instances. In particular, a
relationship between the different instances and points of space is established. Once the instances are located in the
space, the process consists in determining the support vectors of the hyperplane that achieves a greater separation
between the represented points. Thus, the elements of different classes are separated in space and the classification of
new examples only consists in determining which set is the closest [32].
The SVM algorithm was introduced in 1992 [24] hland is commonly used due to its good performance and robustness.
During the learning process, the method projects the instances in a space and then determines the hyperplane that offers
the greatest separation between them. Lastly, the prediction is based on spatial separation. On certain occasions, estab-
lishing a separation between the examples is infeasible. In these cases, the algorithm uses nonlinear mapping techniques
on the original feature space [32].
� Artificial Neural Networks (ANNs): These models are rooted on the functioning of the human brain. The structure of the
model is built out of different layers composed of a variable number of elements, called neurons. These elements are
related to each other through different types of connections with weights. It is important to note that these models
use nonlinear transformations on the input to determine the output, so both weights and nonlinear transformations
are relevant. During the training process, ANNs learn about high-level relationships between the data by themselves. This
allows them to make predictions when they receive unlabeled data [33–35].
MLP [25] has been used to evaluate the ANNs in this study, the main reason being that it is a simple model which offers
good classification performance. MLP allows knowledge to be generalized and extracted from the input data. Throughout
the learning process, the model adjusts the weights according to the data problem. Finally, the model generates an output
vector which is the result of mapping the input data within the network [36].
� Decision Trees (DTs): The most identifying feature of this type of model is its tree-based structure. The fundamental parts
of these models are branches and leaves. Branches allow to evaluate the attributes of the data that determine a greater
separation of the examples in different categories. The leaves determine the value of the target class. During the predic-
tion process, the model will evaluate each of the attributes of the instance (branches) until it reaches a target class value
(leave) [26]. There are a large number of tree-based methods that can be applied to classification. One of the classic meth-
ods within this paradigm is C4.5. This algorithm is frequently used for classification. Fundamentally, branches allow the
different features to be evaluated, which guides the process towards one of the tree leaves that contains the value of the
objective class. Particularly, C4.5 generates a series of classification rules to make new predictions [26].

High dimensionality affects the four classification paradigms presented above. However, the reasons for the decrease in per-
formance are different in each of them. The IBL and SVM methods ground their operation on distances between the input
examples. In spaces of high dimensionality, the distances tend to equalize, so the predictive performance decreases notice-
ably. IBL algorithms using less significant distances cannot correctly identify the nearest neighbors, which implies worse per-
formance. For its part, SVM cannot establish valuable relationships between instances using distances that are not
significant. Similarly, high dimensionality negatively impacts ANNs. The use of more features prevents extracting relevant
high-level relationships, since, in many cases, it involves irrelevant or redundant information. Lastly, decision trees produce
gigantic structures when they work with high dimensional data, meaning that the evaluation time of each of the nodes is
very high and the computational performance of the model decreases.

For these reasons, the four aforementioned algorithms have been selected for this study. kNN, SVM, MLP and C4.5 will be
used to evaluate the performance of ClEnDAE. This way, the behavior of the proposed algorithm is analyzed from different
perspectives. This helps obtain a much more general vision as well as draw conclusions about the effects of dimensionality
reduction with the ClEnDAE method when applying four different classification methodologies. SubSection 3 presents the
ClEnDAE method and Section 4 details the experimentation conducted to evaluate it.
2.3. Autoencoder foundations

The dimensionality reduction model proposed in this paper is based on the use of a type of AE. An AE is a kind of ANN that
has a series of specific characteristics. Its main purpose is to reproduce the input of the network at the output [16]. The model
uses exclusively the input attributes to learn an internal representation that allows it to produce the appropriate output, i.e.,
it is an unsupervised learning method. To achieve this goal, AEs have a specific structure that also prevents the network from
merely copying the input [12,18].

AEs have a symmetric structure. There is no doubt that the input and output layers must have the same size, since their
objective is to reproduce the input in the output. However, not only these two layers are symmetric, but the entire network
is. This structure allows the network to learn an internal encoding from which it can reconstruct the input.

This study focuses on undercomplete AEs considering that, thanks to their architecture, they are the most suited to reduc-
ing the dimensionality of the input space. AEs of this kind generate an encoding in their hidden layer by combining the most
relevant information of the input and discarding redundant or unuseful content. In this manner, this new representation of
the input information constitutes a new space of characteristics of lower dimensionality, which are obtained from the orig-
inal features [16].
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The minimum architecture of an AE contains an input layer, a hidden layer, and an output layer. This architecture can be
more complex by adding extra hidden layers. Even so, the structure must always be symmetric according to the character-
istics of the AEs [18]. Fig. 4 presents an example of the basic architecture of an AE.

Fig. 4 shows that the AE is composed of two fundamental blocks. The encoder, where the model learns the coding of the
input, and the decoder, where network reconstructs the input into the output from the coding. Another important aspect is
that each neuron is connected to the whole next layer through a series of weights, as denoted by Wi in the figure.

The architecture described in this Section corresponds to the most basic AE model. However, there are different types of
AEs with more complex functionings and some of them are: robust AE [37], contractive AE [38] and DAE [39]. Section 2.4
details the DAE model, since it is the basis of the proposal of this study.
2.4. Denoising Autoencoder

AEs are useful models to address feature fusion. Nonetheless, this type of network can be limited to copying input infor-
mation, namely, learning the identity function. This occurs especially when the number of nodes in the hidden layer exceeds
the amount of input nodes. This situation renders the work of the AE useless.

In this scenario, the reconstruction method by itself is not capable of guaranteeing the generation of useful features. There
are different strategies that can be applied to deal with this problem. For instance, by constraining the original data: bottle-
neck or sparse representations of the input. Furthermore, another alternative involves a change in the reconstruction crite-
rion, which consists in cleaning or eliminating the noise of a partially corrupt input [19]. This is the foundation of DAEs.

In this context, the model learns a new representation from a corrupt input and is able to reconstruct the original one,
without noise. This process generates a new representation of higher quality and robustness. In addition, this model, due
to its operation, is less sensitive to the real noise that may exist in the input data.

At this point, it is important to emphasize that eliminating noise is not the objective of this type of model. Instead of that,
the noise introduced in the first layer allows the methods to learn a higher level representation [12,18].

DAEs are models that follow this methodology for feature fusion. There are different ways to introduce noise at the input.
An example could be a DAE that changes random values from the input to the value 0. The number of modified elements
from the input oscillates between 30% and 50%. Even so, this amount will depend on the dimensionality of the input data
and the architecture of the network. A key aspect to consider is that, when calculating the loss function, the model must
compare the output obtained with the original input, without noise. As a result, the possibility of totally or partially copying
the input is practically eliminated, given that the corrupt input is different from the expected output.

The DAE model is similar to a basic AE, but introduces some modifications. The objective of the DAE is to reproduce the
clean input from a corrupt version of itself. Therefore, the first step is to perform a stochastic mapping of the input [39].

The input with noise is mapped through the AE to a coding through the hidden layers. Then, the output of the network is
reconstructed from the coding generated in the hidden layers of the network. Throughout the training process, the network
adjusts the parameters to generate an output as similar as possible to the original input. The fundamental difference is the
use of a corrupt input instead of the clean one.

The goal of DAEs is to minimize the reconstruction error. There are different loss functions such as mean square error
(MSE) or cross entropy. Once the error is determined, the parameters of the network are to be adjusted. There are several
methods for doing this, including stochastic gradient descent (SGD) and its variants, including RMSProp and AdaGrad.

The main purpose of the different SGD methods is to adjust the parameters in such a way that the objective function is
minimized. To do so, a backward propagation process goes through the network from the output layer to the input, trans-
mitting the necessary adjustments to optimize the process. Fig. 5 presents a diagram showing the training process of a DAE.

The training process of DAE is very similar to the one used in a basic AE. Nonetheless, introducing noise in the original
input makes the network more stable against noise and allows the generation of much more robust features. For this reason,
the ClEnDAE model is based on this type of AE to face the task of dimensionality reduction.
Fig. 4. AE basic architecture.
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2.5. Ensemble

The ClEnDAE model is based on ensembles due to their advantages and their good results in other areas [6,20]. An ensem-
ble is a composition of several machine learning models. The main advantages provided by an ensemble-based model are:

� The information given by the different models can be combined, producing a classifier profile that cannot be obtained
from a single model.
� Since each model is based on different subsets of instances and attributes obtained from the input, the ensemble is able to
generalize information based on different sets, whereas a simple model commonly uses the full set and all input features.
� Ensembles can be parallelized more easily than a single model. The nature of ensembles allows parallel execution to be
direct. Some traditional methods need to be redesigned to work concurrently, while the architecture of the ensembles
make them perfectly usable for this type of execution.

From a general point of view, methodologies used in ensembles consist of a series of models that work on the original dataset
in different ways and combine the outputs to generate a single result. There are two large groups of ensembles: sequential
and parallel. Additionally, ensembles can be homogeneous, if the components used are similar, or heterogeneous if there is a
difference in the components of the ensemble. Besides, there are different methodologies available to develop an ensemble,
the best known and most widely used are:

� Bagging: This methodology, also known as Bootstrap aggregation, is one of the basic paradigms used for ensemble devel-
opment. This algorithm is based on the statistical method of bootstrapping to jointly evaluate the execution of several
models run in parallel. Bagging does not use the complete original dataset to train each of the models, but a number
of input examples that are randomly selected.
� Boosting: This classical algorithm is commonly used in the development of ensemble-based methods, which are based on
the reduction of bias by combining different models. Each component is added sequentially and focuses on instances mis-
classified by previous components. In this way, the final model is fitted more precisely to the training set, significantly
improving the classification of problematic instances for individual models.
� Stacking: It is a methodology based on a sequential structure, where outputs provided by the previous models are com-
bined and used as the input for new methods that generate a new set of predictions. It is important to note that, in this
case, all the models that make up the ensemble use the complete input set.

Fig. 6 represents the different types of ensembles that exist in the literature and that have been previously described.
In conclusion, methods based on ensembles allow to expand the search space of the traditional classification algorithms,

as they incorporate several components that use different sets which in turn come from the original data. The aforemen-
tioned advantages have a positive impact on the final performance of this type of algorithm. As a result, the ClEnDAE pro-
posal made in this paper incorporates the use of this methodology.
3. ClEnDAE: A classifier based on ensembles with built-in dimensionality reduction through denoising autoencoders

After having described the main concepts of the theoretical framework associated with our proposal, this section presents
ClEnDAE. It is an ensemble-based classification method that incorporates dimensionality reduction using DAEs.
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Fig. 6. Ensemble typology.
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3.1. ClEnDAE foundations

This study proposes the ClEnDAE model, a method based on two fundamental pillars: DAEs and ensembles. This work is
derived from the hypothesis that an ensemble-based classifier will improve its predictive performance when incorporating
the use of DAEs to reduce dimensionality. This approach leverages the ability of DAEs to reduce dimensionality [19] and the
advantages of using ensembles.

ClEnDAE trains each of the different components with a random subset of both instances and features obtained from the
original dataset. Additionally, this method is grounded on the execution of several models in parallel with the aim of reduc-
ing variance. As a result, generated predictive results are more stable and precise. Last of all, ClEnDAE uses a voting system,
one of the most common techniques to combine the outputs of the different models, meaning that the output of the ensem-
ble corresponds to the majority result obtained by the constituent models.

The number of components of an ensemble depends on many factors, including the properties of the input data and the
number of output classes. In our experiments, the same ClEnDAE configuration is applied to all the datasets that make up the
experimental framework. The performance of ClEnDAE with a large set of data with different characteristics can thus be
determined from a general perspective. For this reason, the number of components is 90, since it represents a significant
number of units for each of the three DAE architectures being considered and an appropriate generic value for the different
datasets. Nonetheless, when applying ClEnDAE to solve a specific problem, the number of components should be adjusted to
data characteristics in order to obtain optimal results. Therefore, the ClEnDAE algorithm has a specific parameter that defines
the amount of components in the ensemble.

Specifically, each unit contains a DAE to reduce the dimensionality of the input space. The new feature space is then used
by a classifier so each component uses a different feature space generated by its DAE. The final result corresponds to the
majority output provided by the 90 models. On account of this, the process followed has three fundamental phases:

� Dimensionality reduction: Each model generates a new feature space out of a subset of instances and features of the input
data. In this phase, DAEs with different architectures are used. These architectures are adapted to generate a space of
lower dimensionality.
� Classification: Data generated by each of the DAEs are used by the same type of classifier. ClEnDAE has four possible clas-
sifiers: kNN, SVM, MLP and C4.5. The method is selected by means of one of its parameters.
� Output: The final response of the model will be the majority output by the different classifiers.

In this context, it is important to emphasize that there are different architectures in the DAEs present in the components of
ClEnDAE. More specifically, they use three architectures with a variable degree of dimensionality reduction. The structure of
the ClEnDAEmodel, built out of 90 components, has 30 models that reduce dimensionality down to 75%, 30 more that reduce
it to 50% and 30 other that reduce it to 25%. As a consequence, within each group, DAEs have a hidden coding layer where the
number of neurons corresponds to 75%, 50% and 25% of the original features, respectively. The use of several architectures
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allows the model to learn high-level characteristics associated with datasets with a different compression degree, increasing
the amount of relevant information in comparison to configurations of a single type. The choice of these architectures is
based on a series of previous works that show their better performance against other possible values [18,19].

Besides, as indicated above, each component uses a different subset of instances and features obtained from the input. To
achieve this, a certain percentage of both instances and attributes are randomly selected. This allows the model’s search
space to be diversified. In this way, the ClEnDAE algorithm treats high dimensionality from different perspectives.

� In relation to training instances: Each model randomly selects a different set.
� From the perspective of the features: In the first place it makes a random sample with replacement of the variables and,
afterwards, it learns a new space of features using the DAE.

In short, ClEnDAE uses a philosophy that is similar to Random Forest, one of the most popular algorithms based on ensem-
bles, when training each component with a random selection of instances and features of the original set. However, ClEnDAE
incorporates more phases to tackle dimensionality reduction from another perspective:

� Each component obtains a new representation of the input variables by means of a DAE out of different random subsets.
� Using new feature spaces, each component obtains a classification model.
� The final output is obtained by combining the outputs of each component by a majority vote.

3.2. Method description

ClEnDAE consists of three phases. Firstly, several random sets of instances and features are obtained from the original
input. Particularly, each subset contains 63.2% of the training examples and 75% of the input features, and both cases involve
a random selection with replacement. The random choice of 63.2% of the instances ensures that all examples are selected at
least once during the training process, considering a sufficiently large number of components, like in this study. This percent-
age is common in bagging and boosting methods. Furthermore, the selection of 75% of the features is based upon a series of
previous studies showing that this reduction degree produces better performance [18,19]. To sum up, this random selection
of both instances and characteristics implies that the search space is diversified in both directions.

Secondly, these subsets are used to train the 90 components of the ensemble. This process consists in training a DAE to
achieve a new representation of lower dimensionality and then training a classifier with the new space to obtain the predic-
Fig. 7. Architecture of the ClEnDAE model proposed in this study.

154



F.J. Pulgar, F. Charte, A.J. Rivera et al. Information Sciences 565 (2021) 146–176
tion. Lastly, the outputs of all components are added to generate the final output of the model. Fig. 7 displays the architecture
of the ClEnDAE model proposed in this paper. The image shows all three phases: random selection, reduction of dimension-
ality and classification; as well as different architectures of DAEs. In addition, Algorithm1 presents the pseudo-code of
ClEnDAE.
Algorithm1: ClEnDAE algorithm’s pseudo-code.
155
Inputs:

TrainData
 .Train Data

TestData
 .Test Data

NumComponent
 .Number of components in

ensemble

ArqDAE
 .Architecture DAE

Clas
 .Classifier

Par
 .Parameters of classifier

1:
 .Training:

2: ensemble  initEnsemble(NumComponent, ArqDAE) 3: foreach component in

ensembledo

4:
 .Instances and features selection:

5: componentData  randomSelection(TrainData) 6:
 .Train DAE:

7: daeModel  trainDAE(componentData, component) 8:
 .New representation through

DAE:

9: componentData  applyDAE(componentData, daeModel) 10:
 .Train classifier:

11: clasModel  trainClassifier(componentData, Clas, Par) 12:
 .Update component:

13: ensemble  updateComponent(component, daeModel, clasModel) 14: end for

15:

16:
 .Classification:

17: result  classification(TestData, ensemble)

18: return result

19:

20: functiontrainDAEcomponentData, component

21: modelData  corruptedInput(componentData)

22: daeModel  ðÞ 23: foreach layer in component do

24: sizeLayer  getSizeLayer(modelData, layer)

25: daeModel  addDAELayer(sizeLayer) 26: end for

27: daeModel  compileDAEModel(modelData, daeModel)

28: component  addDAEModel(daeModel)

29: return component 30: end function

31:

32: functioncompileDAEModelmodelData, daeModel

33: foreach instance in modelData do

34: outPut  feedForwardDAE(daeModel, instance)

35: error  calculateDeviation(instance, outPut)

36: daeModel  updateWeightsDAE(daeModel, error) 37: end for

38: return daeModel 39: end function

40:

41: functionclassificationTestData,ensemble

42: error  0 43: foreach instance in TestDatado

44: outputs  () 45: foreach component in ensembledo

46: newRep  applyDAE(instance, component)

47: componentOutput  applyClassifier(newRep, component)

48: outputs  addOutput(outputs, componentOutput) 49: end for

50: finalOutput  selectMajorityOutput(outputs))

51: error  updateError(instance, outPut)) 52: end for

53: result  calculateError(TestData, error)

54: return result 55: end function
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The input parameters of Algorithm1 are described below:

� TrainData and TestData: The training and test data processed by the algorithm.
� NumComponent: The number of models that make up the ensemble. This value has been set to 90, as explained above.
� ArqDAE: The configuration of the different structures of the DAEs used in the components of the ensemble. Three different
architectures have been considered in this study, so there are 30 models with each configuration. This parameter sets the
number of layers and elements per layer for each configuration.
� Clas: The classifier used by the algorithm. For the purposes of this study, four different classifiers have been considered:
kNN, SVM, MLP and C4.5. All components use the same classifier.
� Par: The parameters associated with the selected classification algorithm.

The operation of the method is divided into two different blocks. The first part (lines 1–14) carries out the training of the
ClEnDAE model. The second part of the code (lines 16–18) performs the classification of the test set to evaluate this model.

The training process has two fundamental objectives. First of all, ClEnDAE focuses on learning a new representation of the
input data to tackle dimensionality reduction using DAEs. Secondly, the selected classification model is trained. These phases
are carried out in each of the ClEnDAE components (lines 3–14). The code associated with this phase is described in more
detail below:

� The initialization of the ensemble is carried out in line 2. This process consists in creating the model structure and all the
associated components. The NumComponent parameter defines the number of components that will be created at this
point. Likewise, the ArqDAE parameter defines the different architectures that the DAEs of said components will contain,
and those will also be initialized.
� Lines 3–14 correspond to a loop that performs the following tasks for each component of the ensemble:
– Line 5: Random selection of 75% of the features and 63.2% of the instances of the training data. This allows to diversify

the search space of the different components.
– Line 7: Training of the DAE responsible for obtaining a new representation with less input data dimensionality.
– Line 9: A new representation of the input subset is computed using the DAE trained in the previous step.
– Line 11: Training of the selected classifier. In this study, four different classifiers have been considered: kNN, SVM, MLP

and C4.5. In this sense, it is important to emphasize that not all models need this phase (for example kNN), in which
case only the initialization of the classifier is performed.

– Line 13: The component is updated with the DAE and the previously trained classifier.

Throughout the process described above, each component of ClEnDAE conducts a DAE training by using the training data to
learn the weights of the network that produce a better representation of the input. This stage corresponds to the trainDAE
function detailed below:

� The first step is to introduce noise into the input (line 21). This is key when operating DAEs, which consists in learning to
rebuild the input from corrupted data.
� As can be seen in the code (for loop, lines 23–26), the structure corresponding to the DAE is created, adding all the nec-
essary layers. Each iteration of the ”for loop” generates a new layer of the model.
� Once initialized, the DAE is trained using the training data in order to update its parameters. Procedure compileDAEModel
iteratively compiles the structure of the DAE. This function is encoded in lines 32–39. In order to carry out this process,
the model generates a new representation for each training instance (line 33), computes the reconstruction error of the
original input (line 34) and updates the weights to minimize the error (line 35). Last of all, the DAE model is returned
using the function (line 37).
� The DAE model obtained in this function is added to the component (line 28) and this is returned (line 29).

The classification function (lines 41–55) carries out the classification. In this process each component obtains the class pre-
diction for test instances (lines 45–49) and all the information is added to generate the final output, selecting the most com-
mon output (line 50). Here are the following stages required to compute this prediction in each component:

1. Firstly, a new coding of the instance is calculated using the DAE model included in each component during the training
phase (lines 46). This representation generates a new feature space with a higher level but lower dimensionality.

2. Secondly, the coding computed in the previous step is used as input of the classification algorithm, generating the final
prediction of the current component (line 47). Each one has an associated classification model that was produced during
the training phase.

3. Thirdly, the output of each component is saved (line 48).
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Lastly, the majority output is selected (line 50) and the error rate is determined, comparing the obtained output to the actual
one (line 51). The global error value is returned by the algorithm to evaluate its behavior (lines 53–54).

As can be seen, the classification phase, which has been explained above, uses data of lower dimensionality than the orig-
inal input, reducing the negative effects caused by the existence of too many features.

Several points regarding the previously mentioned algorithmmust be clarified. For example, the DAE training process has
been executed using a mini-batch gradient descent. This method is a variation of the gradient descent, which divides the
dataset into small batches that are used independently to calculate the error and modify model parameters. This operation
is suitable when a high-dimensional dataset is used.

As aforementioned, all the architectures have a single hidden layer, in addition to the input and output layers. Different
studies in the literature have shown that the use of a single hidden layer produces better results when facing the task of
dimensionality reduction [18,19]. Similarly, having several architectures implies generating different degrees of dimension-
ality reduction. The components will reach high level characteristics with several degrees of generalization and the variabil-
ity of each of their votes will increase.

3.3. Sensitivity study on the ClEnDAE parameters

In this section, an analysis of the parameters that are used by the ClEnDAE method is carried out, allowing to justify the
values denoted in the previous sections.

Specifically, two parameters will be studied: DAE compression percentage (architecture) and the number of components
of the ensemble. To do this, a subset of datasets will be selected from those used in the subsequent experimentation. The
final classification has been carried out using the kNN classifier.

Initially, the architecture of the internal DAEs is analyzed. For that purpose, the architectures given in Table 1 have been
considered. As shown in Table 1, they have a different number of hidden layers and neurons in each layer.

In this experimentation, all components of the ensemble are deemed to have the same architecture. Thus, Table 2 displays
the predictive performance of each configuration. The tables highlight the best results in bold.

These results show that hidden layer architectures generally perform better than hidden multiple layer architectures.
Likewise, in all cases, the best predictive performance is obtained with the 75% configuration. However, the possibility of
combining different models has not been considered. Table 3 presents a comparison between the best previous configuration
and an architecture that contains different types of models (Arq 1, Arq 2 and Arq 3).

The comparison evinces how increasing the diversity of the component architecture contributes to improving predictive
performance. For this reason, in this study, we have used hidden-layer architectures that have a variable reduction
percentage.

Now that the architecture of the DAEs that compose the ensemble is selected, the number of components of the model is
going to be analyzed. Table 4 shows the predictive performance of the ClEnDAE method, considering executions with differ-
ent number of components.

The previous results expose that the best performance is obtained with 90 units. Because of this, the ClEnDAE model is
made up of 90 components in the subsequent experimentation.

3.4. ClEnDAE complexity

The objective of this section is to analyze the computational complexity of the ClEnDAE algorithm. As explained above,
Algorithm1 is fundamentally divided into two parts: the training of the model and the classification of the test set. Firstly,
Table 1
Architectures used in the experimentation.

Number of neurons (%)

# hidden layers Layer 1 Layer 2 Layer 3 Architecture

Arq 1 1 25 - - (25)
Arq 2 1 50 - - (50)
Arq 3 1 75 - - (75)
Arq 4 3 150 25 150 (150, 25, 150)
Arq 5 3 150 50 150 (150, 50, 150)
Arq 6 3 150 75 150 (150, 75, 150)

Table 2
kNN classification results of ClEnDAE with different DAE architecture.

Dataset Arq 1 Arq 2 Arq 3 Arq 4 Arq 5 Arq 6

coil2000 0.541 0.554 0.558 0.520 0.533 0.539
image 0.922 0.938 0.944 0.902 0.918 0.929

madelon 0.588 0.592 0.605 0.559 0.573 0.582
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Table 3
kNN classification results of ClEnDAE with the best DAE architecture and combine different architectures.

Dataset Arq 3 Arq 1 + Arq 2 + Arq 3

coil2000 0.558 0.562
image 0.944 0.954

madelon 0.605 0.614

Table 4
kNN classification results of ClEnDAE with different number of components.

Dataset 60 70 80 90 100 110

coil2000 0.549 0.555 0.559 0.562 0.561 0.558
image 0.947 0.945 0.949 0.954 0.952 0.951

madelon 0.603 0.607 0.611 0.614 0.617 0.615
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considering N the number of training instances, n the features of the dataset, Mthe number of components of the ensemble
and Clt the complexity of classifier training, computational complexity for the training block would be the following:
CClEnDAET ¼ Oð1þMð34� nþM � N þ N þ Clt þ 1Þ ¼
Oð1þMðC � nþM � N þ N þ CltÞÞ ¼

Oð1þM � nþM2 � N þM � N þM � CltÞ ¼
OðM � ðnþM � N þ N þ CltÞÞ ¼

OðM2 � N þM � N þM � nþM � CltÞ

ð1Þ
Expression 1 shows the quadratic factor M2 as being the element of greatest weight. Nevertheless, this will be the case only
when M P N=n. Since this work focuses on high-dimensional datasets, it is possible to assume that M � N and M � n. Con-
sequently, M2 would remain as an additive factor to M � Clt, as it has the greatest weight.

Secondly, considering Nthe number of instances of the test set, Mthe number of components and Clc the complexity of
classifier testing, the computational complexity of the classification block corresponds to:
CClEnDAEC ¼ OðN �M � ClcÞ ð2Þ

To conclude, the computational complexity of both parts of the algorithm depends on the parameters of ClEnDAE. This factor
also depends on the complexity of the selected classifier.

3.5. ClEnDAE contributions

ClEnDAE is an ensemble-based classifier that incorporates DAEs in order to reduce the dimensionality of the input data
and mitigate the associated negative effects. The main contributions of this proposal are the following:

� ClEnDAE treats high dimensionality from different angles. Each component uses a random selection of both instances and
features of the original set. Moreover, the model learns a new representation of the feature space using DAEs.
� The application of DAEs by ClEnDAE to tackle dimensionality reduction delivers improvements in the predictive perfor-
mance of many traditional classifiers, as described in the experimentation.
� ClEnDAE is a model based on ensembles. It relies on the fact that the predictive performance of several components work-
ing together is greater than that of the models used independently.
� Each component of the ensemble uses a random selection of both instances and features to train. Because of this, the
ClEnDAE search space is diversified, improving predictive performance.
� The algorithm is parameterized to use four different algorithms in the classification phase: kNN, SVM, MLP and C4.5. This
allows to evaluate the behavior of the method considering four classic classifiers belonging to different families.

There are methods in the literature that address the problem of high-dimensional data from different perspectives. Similar-
ities and differences between the ClEnDAE method and some of them are listed below:

� SGDNMF [40]: This method aims to extract high-level relationships from the input data to improve the dimensionality
reduction task performed by the classical NMF algorithm. Like ClEnDAE, this method generates a new feature space from
the input data using a deep learning model. However, whereas ClEnDAE is a classification method that incorporates a
dimensionality reduction phase, the SGDNMF algorithm is a data representation method, so the purpose of both algo-
rithms is different.
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� NSSRD [41]: This algorithm addresses the task of feature selection, its main advantage is that it uses the feature graph
together with the data space to improve the performance of this task. Likewise, the method incorporates other mecha-
nisms to guarantee the quality of the selected characteristics. In the same way as ClEnDAE, this method tackles the task
of dimensionality reduction. Nonetheless, each method uses a different paradigm. While ClEnDAE generates new features
by merging the originals, the NSSRD method selects original features directly. The ClEnDAE method incorporates an addi-
tional classification phase, where the model output is generated.
� LDSSL [42]: This method applies the decomposition matrix to feature selection, preserving both local discriminant struc-
ture and local geometric structure of the data. Similar to the ClEnDAE method, LDSSL aims to preserve the structure of the
input data and reduce the dimensionality of the input data at the same time. However, while ClEnDAE generates new
characteristics based on the original data, LDSSL selects those that are most relevant. Hence, the philosophy used to deal
with dimensionality reduction is different.
� DSNMF [43]: This method, like ClEnDAE, performs dimensionality reduction of the input data in two phases. However, its
methodology is different. First, the DSNMF algorithm looks for a low-dimensional representation of the data. Next, it
makes a selection of the most relevant characteristics. This allows a new space to be obtained with smaller yet much
more representative features. DSNMF is a feature selection method, while ClEnDAE incorporates the feature fusion as
an internal phase to classify the input data.

In addition to presenting the ClEnDAE model, this study intends to demonstrate how it properly mitigates the effects of high
dimensionality when addressing classification tasks. An exhaustive experimental analysis is performed to this effect in Sec-
tion 4. This study is divided into two phases: a comparison of the predictive performance of the model using different tra-
ditional classifiers, and an analysis of the results obtained by means of the ClEnDAE model with respect to other traditional
dimensionality reduction algorithms.
4. Experimental Study

There are pre-exisiting studies that have shown both the benefits of using AEs to deal with the feature fusion task [12,18]
and some that focus on the use of DAEs [19]. The main objective of the experimentation developed in this paper is to demon-
strate the improvements obtained when treating this task using ClEnDAE. To that end, it is necessary to conduct an exhaus-
tive comparison between a basic DAE model, a model based on the ensemble of DAEs and the results obtained from the
original data. The process to execute each model is as follows:

� Basic classifier (baseline): In this case, the original raw data is used to classify by means of algorithms kNN, SVM, MLP and
C4.5.
� Basic DAE: The first stage involves carrying out the task of feature fusion. As a result, different lower-dimensional subsets
are obtained for each original dataset. The architecture used has a hidden layer that compresses 75% of the original char-
acteristics. This configuration has shown the best performance in previous studies [3,18]. Then, classification is performed
with different traditional methods. Each algorithm uses the subsets generated by the basic DAE. The classifiers applied in
this phase are: kNN, MLP, SVM and C4.5.
� ClEnDAE: The algorithm proposed in this study is completed with four different classification algorithms: kNN, SVM, MLP
and C4.5. Four executions are made for each dataset, changing the parameter corresponding to the classifier.

Afterwards, the classification performance of the different methods can be compared, in order to establish which model
offers the best results.

The following subsections present the development of the experimentation explained above. Essentially, it intends to
achieve the following goals:

� To determine the performance of our proposal, ClEnDAE. To this end, an exhaustive comparison is performed between the
results from this model and the results from a basic DAE model and the original data, as detailed in SubSection 4.2. This
comparison is made for each dataset and for each of the four classification algorithms considered in this study.
� To compare the results obtained with the ClEnDAE model and the four traditional methods of dimensionality reduction:
LDA, PCA, ISOMAP and LLE, as shown in SubSection 4.4.
� To present some general conclusions on the results obtained in this study in SubSection 4.3 with the following aims:
– To analyze the performance of the different models according to each classifier.
– To identify which model offers the best performance for each case.
– To suggest new lines of future research based on the outcomes of the study.

Before presenting the results of the experimentation, SubSection 4.1 describes the framework used in this study: datasets,
metric, statistical tests, AEs architecture and classification algorithms.
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4.1. Experimental framework

To establish a comparison between the models considered in this study, it is necessary to use a broad set of datasets with
varied characteristics. Table 5 presents the datasets included in this experimentation, as well as their most relevant traits.
The Field column presents the field of application.

Additionally, the area under the ROC curve (AUC) is employed to evaluate the different models in this study. The main
advantage of this metric is that it offers a robust view of the predictive performance of the analyzed methods. In other words,
AUC provides a global view of the results, while other metrics such as Accuracy or Precision give a more partial view [18].
AUC is the probability that a model will classify a randomly chosen positive instance higher than a randomly chosen negative
one. Eq. (3) shows the definition of AUC:
Table 5
Charact

Num

arce
batc
coil2
dota
drive
facia
fashi
giset
hapt
imag
isole
lette
mad
mfea
micr
micr
mnis
mus
nom
seme
AUC ¼
Z �1

1
TPRðTÞFPRðTÞdT ð3Þ
where TPR is the true positive rate and FPR is the false positive rate.
This experimentation has involved the AUC metric for evaluation of both binary and multi-class datasets. Package pROC

for R has been used for this purpose. This framework contains a set of tools to visualize and analyze the ROC curves. More
precisely, the package documentation indicates that the AUC calculation for multi-class datasets is performed as defined by
Hand and Till in [44].

Once the method for evaluating the results obtained has been established, it is essential to present the statistical tests
applied in this study. These tests analyze the results to see if they are statistically significant and, consequently, different
conclusions can be reached. The tests used are as follows:

� The Friedman test [45] allows to obtain a ranking of the different models. In this manner, it is possible to establish which
model has a better performance from a general point of view.
� The Li post hoc test [46] for the Friedman test is a non-parametric method. This test is applied to identify significant dif-
ferences between the models compared in this experimentation. As a means to do so, it compares all the models with
each other. The Li test is used in this study because it is one of the best alternatives for finding significant differences
when the number of samples is not very large.

Lastly, it is necessary to state the hardware equipment on which the experimentation has been conducted. The objective is to
make the experimentation as reproducible as possible. The experiments were performed in a cluster composed of 8 comput-
ers, with 2 CPUs (2.33 GHz) and 7 GB RAM each. Moreover, it is important to indicate that the models based on AEs (basic and
ensemble) have been implemented in the Python language, using the Keras library. Classification methods, which have been
developed using the R language, are detailed in SubSection 4.1.1.
4.1.1. Classification Algorithm Framework
In this section, the data generated by ClEnDAE will be used by different classification algorithms in order to verify the

performance of the feature fusion. As a result, the experimentation will provide useful information about the behavior of
eristics of the datasets used in the experimentation.

ber of Dataset Samples Features Classes Type Field

ne 900 10000 2 Real Medical
h 13910 128 6 Real Chemical
000 9822 85 2 Integer Social

102944 116 2 Real Game
58509 48 11 Real Motor

l 2964 301 2 Real Image
onmnist 70000 784 10 Integer Image
te 13500 5000 2 Integer Image

10929 561 12 Real Activity
e 2310 19 7 Real Image
t 7797 617 26 Real Image
r 20000 16 26 Integer Image
elon 2000 500 2 Real Artificial
t 2000 649 10 Real Image
ov1 360 1300 10 Real Biology
ov2 571 1300 20 Real Biology
t 70000 784 10 Integer Image
k 6598 168 2 Integer Physical
ao 1970 118 2 Real Technology
ion 1593 256 10 Integer Image
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the ensemble model according to data characteristics and the classification algorithm. This subsection focuses on introduc-
ing the classification algorithms considered in this study, specifying their implementation and their main parameters.

Each classification algorithm has been obtained from a specific R package. Then, the details for each algorithm are shown,
including the parameterization used, which is a fundamental aspect for the reproducibility of the experiment.

� kNN algorithm: The kknn package incorporates the kNN algorithm employed in this study. Furthermore, it is convenient
to remark that the number of neighbors (parameter k) was 5, since it is the recommended value in the literature [18].
� SVM algorithm: Package e1071 has provided the SVM method. In this case, the algorithm has been executed with the
default parameters that can be consulted in the package documentation [47].
� MLP algorithm: The execution of MLP has been performed using packages caret and RSNNS. The parameters of this
method are the default values specified in the package documentation [48].
� C4.5 algorithm: Package RWeka provides method C4.5. The parameters used in the execution of the method are the
default values specified in the documentation [49].

It is possible to see that the default values are used in all cases. The main reason is that this study focuses on verifying the
performance of an ensemble model of DAEs over a set of traditional classification algorithms, without adjusting the param-
eters for each of the specific cases.

4.2. Classification Algorithms Analysis

The objective of this section is to analyze the performance of ClEnDAE with different classification methods. ClEnDAE has
a parameter that allows the user to select the desired classifier from four possibilities: kNN, SVM, MLP and C4.5. This makes it
possible to study how feature fusion with the ClEnDAE model infuences the predictive performance of these algorithms.

In this context, SubSections 4.2.1, 4.2.2, 4.2.3 and 4.2.4 describe the results achieved in the experimentation for algo-
rithms kNN, SVM, MLP and C4.5, respectively. The structure of all four subsections is similar. First, a figure displays the clas-
sification results (AUC) generated with the ClEnDAE model, the basic DAE and the raw data. This is accompanied by a ranking
of the different models and the results of the Li test, in order to determine whether the results are statically significant.

4.2.1. kNN
The classification results for the kNN algorithm are showcased in Fig. 8. This image displays the results obtained with the

ClEnDAE model, the basic DAE and the original data for each dataset. This visual representation helps observe that the ClEn-
DAE model generates the best predictive performance in most cases. In particular, in 17 out of 20 cases the best performance
is obtained with the ClEnDAE model and in 2 out of 20 cases it is obtained with the raw data. It is important to note that the
ClEnDAE method performs better than the basic DAE model in all cases except for one, in which they tie. In summary, in 85%
of the cases the ClEnDAE model improves the results from a basic DAE model and the plain data.

These results determine that a clear improvement in predictive performance is obtained when the dimensionality is
reduced using the ClEnDAE model. A previous study shows how DAEs can improve their predictive performance with
distance-based algorithms, specifically, kNN [19]. These methods based on distances between examples are affected by
the high dimensionality of the input data, since in this context the distances are much less significant. This has a direct effect
on the predictive performance achieved by the IBL algorithms. Incorporating DAEs to reduce the dimensionality with feature
fusion makes distances more significant. Likewise, the new features group the most relevant information of the input space.
As a result, there is an improvement in the predictive performance of the classifier.

In this sense, the ClEnDAE model, which internally trains a large number of basic DAE models, improves the results gen-
erated by an individual DAE. The main reason is that each of the DAEs that compose the ensemble can learn certain features
of the data and, thus, generalize a larger amount of relevant information than an individual model.

Finally, Table 10 included in A.1 contains the specific results of the experimentation described above. The best results are
obtained with the ClEnDAE method in most cases. This table confirms the conclusions reached from the previously analyzed
figure.

4.2.2. SVM
In this subsection, classification results for the SVM algorithm are presented in Fig. 9. The general trend followed by the

kNN algorithm is maintained in this case. Overall, the predictive performance of the SVM algorithm improves by using the
data synthesized by the ClEnDAEmodel. Reviewing the data in detail, the ClEnDAEmodel obtains the best results in 16 out of
20 cases and the model that uses the original data works best in 2 out of 20 cases. There is one dataset (coil2000) for which
the three models generate similar results and another dataset (mfeat) for which the models that use DAE (ensemble and
basic) have the same performance. Similarly to the kNN case, these data reveal that the ClEnDAE algorithm performs better
with all datasets as compared to the basic DAE model, except in two cases where they tie. In short, the ClEnDAE model pro-
duces the best results in 80% of the cases (not counting the ties).

The predictive performance of the SVM algorithm when using ClEnDAE significantly improves as compared to the basic
model and the original data. SVM is based on the maximization of the distances between instances of different classes [32].
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Fig. 8. AUC results for kNN algorithm.
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However, these distances are equalized in spaces of high dimensionality. This implies loss of performance in this type of
model and the need to apply methods that reduce the input space to mitigate the effects [5].

In this study, the proposal based on DAEs carries out a feature fusion that reduces the input space, making the distances
more significant. In the same way, the model based on ensembles allows several DAEs to be trained simultaneously, which
can generate different feature spaces that prevent it from discarding relevant information. Consequently, the graphs shown
in this subsection confirm that the proposed model generates improvements in the behavior of the SVM algorithm.

Table 11 (see A.2) displays the results of the different models after applying the SVM algorithm. These data verify that the
ClEnDAE model produces the best performance for most of the datasets used.
4.2.3. MLP
Fig. 10 represents the predictive performance of the different models. These data confirm the trend marked by the pre-

vious algorithms. The best results are obtained using the data that is generated by the ClEnDAEmodel, namely, feature fusion
which was made with the proposed model has a positive effect on the MLP performance. A more detailed analysis of the
results shows that the ClEnDAE model reaches the best performance in 16 out of 20 cases, the model based on the plain data
works best in 2 out of 20 cases and the basic DAE model does not generate the best results in any case. In addition, there is a
dataset (coil2000) for which all models provide similar outcomes and another dataset (musk) in which DAE-based models
(basic and ensemble) produce the same value. This algorithm confirms the aforementioned tendency: the ClEnDAE model
generates better results than the proposal based on basic DAE in all cases, with the exception of two ties. In short, the ClEn-
DAE model obtains the best predictive performance in 80% of the analyzed cases (excluding ties).

At this point, it is possible to state that the predictive performance of the MLP algorithm improves when using the ClEn-
DAE model to reduce the dimensionality of the original feature space. The MLP algorithm is a basic neural network whose
fundamental objective is to classify a series of instances based on training examples [25]. The training process consists in
training the network to progressively reduce the prediction error in the training data. Nonetheless, in high dimensional
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Fig. 9. AUC results for SVM algorithm.
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spaces, the information of each class that the network learns is less meaningful, therefore, the predictive performance is neg-
atively affected.

The ClEnDAE model, proposed to reduce the input space, is fundamentally based on ANNs. Because of that, the fusion of
previously generated features can be seen as a series of previous layers that generate the input of another network. In the
literature, there are classification models that incorporate the DL-based feature fusion process internally, although this phase
is similar to the one performed in this study [14]. In both cases, the dimensionality reduction phase allows the generation of
new features that group relevant information from the input data. As such, the functioning of the classification algorithm
MLP improves considerably.

In order to visualize the aforementioned outcomes more minutely, Table 12 is presented in A.2. The data represent the
predictive performance of the different models using the MLP algorithm for each dataset. This confirms the fact which
has been described above, the ClEnDAE model generates the best results in most cases.
4.2.4. C4.5
Fig. 11 illustrates the predictive performance achieved with the C4.5 algorithm. In general, the behavior of the C4.5 algo-

rithm is very similar to that shown by the previous algorithms and confirms the trend they have set. The classification made
with C4.5 using the data generated by the ClEnDAE model performs best in most of the datasets in the analysis. More con-
cretely, ClEnDAE obtains the best results in 18 out of 20 cases, the model based on the plain data in 2 out of 20 and the basic
DAE model does not produce the best performance in any case. As a result, this analysis confirms that the ClEnDAE model
improves the basic DAE for every case considered. In summary, ClEnDAE provides the best performance in 90% of cases (ex-
cluding ties).

As explained above, the performance of the C4.5 algorithm is clearly improved when feature fusion is applied through the
ClEnDAE model. This fact allows to infer that the generation of new high-level features benefits tree-based algorithms. Par-
ticularly, the C4.5 algorithm follows a training process where it analyzes the attributes that cause a separation of instances in
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Fig. 10. AUC results for MLP algorithm.
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classes [26]. This is the reason why high dimensionality of the data complicates the process of selecting the most significant
features. In this circumstance, the reduction of dimensionality with ClEnDAE helps mitigate these effects.

The proposed model generates new features that group the most relevant information of the input space. As a conse-
quence, algorithm C4.5 has a smaller and much more significant input space, enabling it to look more effectively for the attri-
butes that divide the instances between the classes.

Finally, Table 13 (see A.1) confirms the aforementioned statements. Different data show that the best results are obtained
with ClEnDAE for most of the analyzed datasets.
4.3. Results Analysis

The previous subsections have presented results from four traditional classifiers with data generated with the ClEnDAE
dimensionality reduction model. Nevertheless, it is necessary to verify if these results are really significant. With this in
mind, a variety of statistical tests will be used. These determine if there are actual differences between the models. The fact
that these differences exist will support the results and the conclusions reached.

The main objective of this phase is to corroborate if there are significant differences between the results generated with
the proposed ClEnDAE model and those provided by the basic DAE and the plain dataset. The data seen in the SubSections
4.2.1, 4.2.2, 4.2.3, 4.2.4 intuitively show that the ClEnDAEmodel works best, now it is necessary to determine if this improve-
ment can be supported statistically. In this sense, the first step is to apply the Friedman test [45]. It allows to compute an
average ranking for each classifier according to the results from the different analyzed models.

Table 6 presents the resulting rankings for the four classification algorithms: kNN, SVM, MLP and C4.5. In all cases, the
ClEnDAE model offers the best average performance, since it is the model with the best rank among the four algorithms.
The model built on basic DAE is always in second place. Finally, the model that uses the plain data ranks last overall, that
is, the results generated using the original data are the lowest in general. The rankings produced by the Friedman test sup-
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Table 6
Average rankings of the different models (DAE, ClEnDAE and plain data) according to classification method.

kNN SVM MLP C4.5

AE Model Ranking AE Model Ranking AE Model Ranking AE Model Ranking

ClEnDAE 1.150 ClEnDAE 1.150 ClEnDAE 1.150 ClEnDAE 1.100
DAE 2.100 DAE 2.150 DAE 2.200 DAE 2.200
Plain 2.750 Plain 2.700 Plain 2.650 Plain 2.700

Fig. 11. AUC results for C4.5 algorithm.
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port the conclusions reached in the previous subsections, which indicated that the ClEnDAE model reached the best predic-
tive performance in most cases. Besides, this statistical test confirms that there are significant differences.

Once the Friedman test has been applied, a second test must be used to confirm whether the differences between the
models observed in the rankings are significant or not. The Li test [46] is applied for this purpose. This is a specific post
hoc test for the Friedman test that compares the different models present in the ranking. When used, the test offers a series
of p-values that determine if there are differences between the models.

The data obtained after applying the Li test for the four classification algorithms can be seen in Table 7–9. It shows that
there are significant differences (values in bold) between ClEnDAE and the compared models in all cases. In general, all p-
values are very low. Particularly, the ClEnDAE model always shows significant differences to the rest of the models, which
confirms the improvements in performance discussed above. Regarding the disparities between the model with plain data
and the basic DAE model, significant differences are also found for the four analyzed algorithms. This corroborates that the
use of DAE for feature fusion improves the performance of the classifiers, as has been described in previous studies [19].

In addition to this, Fig. 12 represents the critical distances for the different models considered. This type of graph
illustrates whether there are significant differences between the different models. Specifically, if there are no significant
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Table 7
Li post hoc Friedman test for classification algorithms by AE Model.

Plain DAE ClEnDAE

kNN Plain - - -
DAE 3.983E-02 - -

ClEnDAE 4.375E-07 2.276E-03 -
SVM Plain - - -

DAE 8.199E-02 - -
ClEnDAE 1.036E-06 1.702E-03 -

MLP Plain - - -
DAE 1.547E-01 - -

ClEnDAE 2.486E-04 1.062E-03 -
C4.5 Plain - -

DAE 1.138E-01 -
ClEnDAE 4.740E-07 5.687E-04

Table 8
Average rankings considering ClEnDAE, PCA, LDA, ISOMAP and LLE by classification method.

kNN SVM MLP C4.5

Architecture Ranking Architecture Ranking Architecture Ranking Architecture Ranking

ClEnDAE 1.275 ClEnDAE 1.475 ClEnDAE 1.875 ClEnDAE 1.750
LDA 2.825 LLE 3.000 ISOMAP 3.000 LDA 2.700
LLE 3.150 LDA 3.025 LDA 3.100 LLE 3.150

ISOMAP 3.250 ISOMAP 3.125 LLE 3.375 ISOMAP 3.350
PCA 4.500 PCA 4.375 PCA 3.650 PCA 4.050

Table 9
Li post hoc Friedman test for dimensionality reduction methods by classification algorithm.

ClEnDAE PCA LDA ISOMAP LLE

kNN ClEnDAE - 1.118E-09 3.867E-03 3.907E-04 5.893E-04
PCA - - - - -
LDA - 2.019E-03 - 4.668E-01 5.532E-01

ISOMAP - 1.769E-02 - - -
LLE - 1.153E-02 - 8.415E-01 -

SVM ClEnDAE - 6.6631E-08 6.436E-03 4.824E-03 6.436E-03
PCA - - - - -
LDA - 1.188E-02 - 8.708E-01 -

ISOMAP - 1.769E-02 - - -
LLE - 1.188E-02 9.691E-01 8.685E-01 -

MLP ClEnDAE - 3.846E-03 4.683E-02 6.001E-02 1.343E-02
PCA - - - - -
LDA - 4.099E-01 - - 6.642E-01

ISOMAP - 3.497E-01 8.415E-01 - 5.779E-01
LLE - 6.642E-01 - - -

C4.5 ClEnDAE - 4.225E-05 1.115E-01 6.852E-03 1.693E-02
PCA - - - - -
LDA - 1.724E-02 - 2.358E-01 3.995E-01

ISOMAP - 2.225E-01 - - -
LLE - 1.169E-01 - 6.892E-01 -
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differences between two models, they are connected by a horizontal line in the graph. In Fig. 12, it is possible to see the
significant differences between ClEnDAE and the rest of the methods used for all classifiers.

In conclusion, the statistical tests conducted in this Subsection confirm the statements made in SubSections 4.2.1, 4.2.2,
4.2.3, 4.2.4. The ClEnDAE model provides a clear improvement in the predictive performance of the four classification algo-
rithms analyzed in this study: kNN, SVM, MLP and C4.5. In a similar way, the basic DAE model also produces better results
than the model based on plain data. Nonetheless, the proposed ClEnDAE model performs better across all classification
algorithms.
4.4. ClEnDAE vs classical feature extraction techniques

ClEnDAE is a feature fusion algorithm that aims to mitigate the negative effects of the high dimensionality of the data. In
previous sections, the effectiveness of the model proposed in this work has been compared with plain data and another DAE-
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Fig. 12. Critical distance between ClEnDAE, DAE and plain models for kNN, SVM, MLP and C4.5.
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based model. However, it is necessary to establish a comparison of the ClEnDAE model with other traditional dimensionality
reduction methods. PCA, LDA, ISOMAP and LLE have been selected for this purpose, since they are four of the best known
algorithms to treat high dimensionality of the data. To conduct the comparison, the ClEnDAE, PCA, LDA, ISOMAP and LLE
methods have been used on the same datasets. The number of features generated by these algorithms will be the same in
every case: 75% of the number of original features. It is essential that this value is shared in order to establish a reliable com-
parison and draw appropriate conclusions. Lastly, the data generated by the ClEnDAE, PCA, LDA, ISOMAP and LLE methods
will be used to classify with the algorithms: kNN, SVM, MLP and C4.5. The predictive performance obtained with the differ-
ent subsets provides the possibility to determine which model generates the best space of reduced dimensionality.

Classification results for the different datasets are presented in Figs. 13–16. There is an image for each classifier: kNN,
SVM, MLP and C4.5, respectively. Moreover, each classifier represents the predictive performance attained from the different
models: the proposal of this study, ClEnDAE, and the traditional dimensionality reduction approaches, PCA, LDA, ISOMAP and
LLE. In every case, there is a bar chart for each dataset.

The observation of the results presented in Figs. 13–16 leads us to make the following observations:

� kNN: The best results for 16 out of 20 datasets are obtained with the ClEnDAE model. The LDA method only reaches the
best performance in one case (musk), the PCA algorithm in none, ISOMAP in one case (microv1) and LLE in another dataset
(arcene). There is a case in which both ClEnDAE and LLE generate the best performance. This means that ClEnDAE-based
representations work best in 80% of the analyzed cases (not counting the ties).
� SVM: The ClEnDAEmethod achieves the best predictive performance in 16 out of 20 cases, the LLE algorithm in 3 out of 20
(it tied with ISOMAP in the microv1 case) and PCA and LDA do not provide the best performance in any case. There is a
dataset (coil2000) in which models ClEnDAE, LDA, ISOMAP and LLE all produce the same result. In other words, the pro-
posed ClEnDAE model generates better performance in 80% of cases (excluding ties).
� MLP: The ClEnDAE algorithm works best in 13 out of 20 cases. The LDA method attains better performance in 2 out of 20
datasets and PCA, ISOMAP and LLE in one case each. For one of the datasets (coil2000) the results of the three methods are
equivalent and for another (microv1) the performance of LLE and ISOMAP is equivalent. The model proposed in this study
produces the best results in 65% of cases (without counting ties).
� C4.5: The ClEnDAE model achieves the best predictive performance in 16 out of 20 cases. The LDA algorithm works better
in 3 out of 20 cases and ISOMAP in another dataset. Lastly, PCA and LLE models do not generate the best results in any
case. This means that the ClEnDAE method gets better results than the rest in 80% of cases.

The results described above mark a common trend for all the analyzed classification algorithms: the ClEnDAE model works
better than PCA, LDA, ISOMAP and LLE, in general. This means that the feature fusion performed with ClEnDAE builds a new
feature space that provides more relevant and useful information than four of the most used models in dimensionality
reduction. This pattern can be confirmed in Tables 10–17 corresponding to the algorithms kNN, SVM, MLP and C4.5, respec-
tively. The tables highlight the best results in bold, so it is possible to infer that, as a rule, ClEnDAE produces the best
performance.

Nevertheless, the previous results must be duly supported by statistical tests that establish a solid basis for the conclu-
sions reached. To do so, it is necessary to determine if there are significant differences between the studied proposals.
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Fig. 13. AUC results for kNN algorithm.
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The first step consists in applying the Friedman test [45]. Different rankings for each classification algorithm are pre-
sented in Table 8. In this manner, a vision of the global operation of the different dimensionality reduction methods can
be visually obtained.

The four rankings provided in Table 8 corroborate the above conclusions. The ClEnDAE model generates the best predic-
tive performance for all classification algorithms. The LDA, LLE, ISOMAP and PCA methods perform worse than the ClEnDAE
method in all the analyzed cases, with PCA producing the worst results. Moreover, LLE, LDA and ISOMAP algorithms gener-
ally have an equivalent performance. This is the first step to confirm that the ClEnDAE model offers a significant improve-
ment as compared to PCA, LDA, ISOMAP and LLE.

The second step is to apply the Li post hoc tests [46] for the Friedman test. It compares the different methods to establish
whether there are significant differences between them.

In this sense, Table 9 shows the results obtained after applying the Li test. This table represents, for each pair of models,
the p-value associated with its statistical difference. It can be observed that the ClEnDAE model shows significant differences
with respect to the LDA, PCA, ISOMAP and LLE methods in the four analyzed classification algorithms, since the p-values are
notably low. This means that there is a statistical confirmation of the improvement provided by the ClEnDAE method with
regard to PCA, LDA, ISOMAP and LLE. This supports the statements that have been made after presenting the experimental
data.

Finally, Fig. 17, representing the critical distances for the different considered models, shows that ClEnDAE presents sig-
nificant differences with respect to all of them.

In summary, the objective of this section is to establish a comparison between our proposal, ClEnDAE, and four traditional
dimensionality reduction algorithms: PCA, LDA, ISOMAP and LLE. The results of the experimentation have shown that the
proposed method typically works better than the four traditional models. These data have been adequately supported by
several statistical tests that find significant differences between them. In conclusion, the predictive performance of the four
classifiers used with the ClEnDAE method is much higher. This suggests that the feature fusion process performed by our
proposal generates higher quality and more relevant characteristics than the other traditional proposals. This experimenta-
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Fig. 14. AUC results for SVM algorithm.

F.J. Pulgar, F. Charte, A.J. Rivera et al. Information Sciences 565 (2021) 146–176
tion provides a basis for which the ClEnDAE model could be considered an option to take into account to mitigate the effects
of high dimensionality.
5. Concluding remarks

In this study, a model to deal with the task of dimensionality reduction has been proposed. This task is a challenge in
machine learning, due to the negative effects that high dimensionality of the data produces in many circumstances. Specif-
ically, this study is based on the effects of high dimensional data in different classification methodologies.

In order to address it, the ClEnDAE algorithm has been proposed. The fundamental objective of this method is to mitigate
the effects of high dimensionality of the data. Thus, ClEnDAE carries out a type of feature fusion that reduces the dimension-
ality of the input space. The new features generated by our method add the most relevant information obtained from the
original data and discard redundant or meaningless information. Good results achieved by AEs when dealing with the task
of feature fusion were the inspiration which led to the development of this algorithm [12,18], in particular, some studies that
show models based on DAEs performing better than traditional models [19]. The ClEnDAE method is based on two funda-
mental pillars: DAEs and ensembles. In this sense, the use of DAEs to address the reduction of dimensionality joins the
advantages of the ensembles. Broadly speaking, a model based on ensembles allows several basic models to be trained simul-
taneously with partitions of the input data. This helps each model generalize relevant information of the different partitions
of the data. Once the information generated by the different models is merged, the result has more relevance and usefulness
than when using a single basic model.

An exhaustive study has been developed in order to determine the effectiveness of the ClEnDAE model. Fundamentally,
the experimentation consists in analyzing the predictive performance of four traditional classifiers: kNN, SVM, MLP and C4.5,
after performing feature and information fusion with the proposed model. This performance is compared with that obtained
after using a basic DAE model and after using original data. Furthermore, a comparison with four traditional dimensionality
reduction algorithms (PCA, LDA, ISOMAP and LLE) is conducted.
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Fig. 15. AUC results for MLP algorithm.
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The first part of the experimentation has shown that the ClEnDAE model leads to better predictive performance than the
basic DAE model and the plain data model for the four analyzed classifiers. The ClEnDAE proposal obtains the best results in
more than 72% of the cases. Similarly, these conclusions have been duly confirmed by several statistical tests.

Later, the second part of the experimentation has analyzed the performance of ClEnDAE against PCA, LDA, ISOMAP and
LLE. This part has shown that ClEnDAE works better than four of the most common algorithms for the task of dimensionality
reduction. Concretely, the ClEnDAE model obtains the best results in more than 80% of the cases for kNN, SVM and C4.5
methods and more than 65% for MLP. Statistical tests have confirmed the differences between the different models as well.

Finally, this experimentation has shown that the ClEnDAE model is able to mitigate the effects caused by the high dimen-
sionality of the data, improving the predictive performance of different classifiers corresponding to traditional methodolo-
gies. Likewise, the provided performance is better than some of the most commonly used traditional algorithms: LDA, PCA,
ISOMAP and LLE.

In conclusion, ClEnDAE is a method of feature fusion based on DAEs that deals with the problem of high dimensionality.
This paper describes the developed method and an exhaustive experimentation to verify its proper operation. The provided
conclusions open new lines of future work where other models of AEs, for instance, robust or contractive AEs [12], are used
to generate models that are similar to ClEnDAE. The ClEnDAE method could also be applied to solve specific problems, adapt-
ing its structure and functioning to make it more effective.

The proposed algorithm can be improved by adjusting its parameters to the specific input data or by introducing new
models for both classification and dimensionality reduction. Moreover, the ClEnDAE method can be related to emerging
lines of research such as data lake [50]. In this regard, the ClEnDAE method can take the raw data stored in this type
of system, perform the learning and feature fusion processing and, last of all, store the generated data in another data lake
for later use.
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Table 10
kNN results for plain data, DAE and ClEnDAE models (AUC).

Dataset Plain Data DAE ClEnDAE

arcene 0.693 0.672 0.719
batch 0.870 0.990 0.992

coil2000 0.546 0.554 0.562
dota 0.416 0.522 0.534
drive 0.800 0.846 0.879
facial 0.795 0.685 0.698

fashionmnist 0.906 0.920 0.929
gisette 0.824 0.923 0.923
hapt 0.903 0.931 0.942
image 0.929 0.950 0.954
isolet 0.943 0.968 0.975
letter 0.973 0.923 0.951

madelon 0.526 0.591 0.614
mfeat 0.703 0.984 0.988

microv1 0.920 0.939 0.939
microv2 0.883 0.932 0.951
mnist 0.965 0.975 0.978
musk 0.829 0.941 0.947
nomao 0.891 0.904 0.914
semeion 0.927 0.940 0.945

Fig. 16. AUC results for C4.5 algorithm.
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Table 12
MLP results for plain data, DAE and ClEnDAE models (AUC).

Dataset Plain Data DAE ClEnDAE

arcene 0.522 0.500 0.525
batch 0.914 0.920 0.926

coil2000 0.500 0.500 0.500
dota 0.500 0.500 0.538
drive 0.698 0.680 0.772
facial 0.520 0.701 0.716

fashionmnist 0.901 0.911 0.914
gisette 0.605 0.627 0.682
hapt 0.839 0.850 0.857
image 0.703 0.872 0.888
isolet 0.827 0.842 0.869
letter 0.734 0.740 0.748

madelon 0.500 0.637 0.641
mfeat 0.500 0.968 0.975

microv1 0.678 0.690 0.711
microv2 0.708 0.725 0.742
mnist 0.872 0.905 0.906
musk 0.850 0.999 0.999
nomao 0.901 0.530 0.653
semeion 0.827 0.756 0.789

Table 11
SVM results for plain data, DAE and ClEnDAE models (AUC).

Dataset Plain Data DAE ClEnDAE

arcene 0.500 0.632 0.642
batch 0.923 0.980 0.985

coil2000 0.500 0.500 0.500
dota 0.509 0.550 0.553
drive 0.885 0.941 0.972
facial 0.802 0.713 0.742

fashionmnist 0.932 0.940 0.943
gisette 0.803 0.969 0.972
hapt 0.900 0.889 0.902
image 0.846 0.877 0.891
isolet 0.954 0.975 0.980
letter 0.966 0.828 0.861

madelon 0.569 0.591 0.594
mfeat 0.970 0.985 0.985

microv1 0.500 0.918 0.925
microv2 0.500 0.871 0.893
mnist 0.981 0.985 0.986
musk 0.838 0.948 0.962
nomao 0.914 0.924 0.935
semeion 0.891 0.957 0.959

Table 13
C4.5 results for plain data, DAE and ClEnDAE models (AUC).

Dataset Plain Data DAE ClEnDAE

arcene 0.655 0.678 0.699
batch 0.921 0.982 0.984

coil2000 0.503 0.516 0.521
dota 0.462 0.539 0.546
drive 0.869 0.850 0.884
facial 0.789 0.655 0.672

fashionmnist 0.877 0.888 0.889
gisette 0.657 0.743 0.749
hapt 0.798 0.799 0.802
image 0.832 0.859 0.874
isolet 0.870 0.874 0.878
letter 0.922 0.811 0.821

madelon 0.520 0.524 0.553
mfeat 0.911 0.913 0.931
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Table 14
kNN classification results of ClEnDAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset PCA LDA ISOMAP LLE ClEnDAE

arcene 0.661 0.654 0.738 0.747 0.719
batch 0.861 0.852 0.786 0.862 0.992

coil2000 0.523 0.525 0.525 0.502 0.562
dota 0.513 0.517 0.516 0.516 0.534
drive 0.683 0.782 0.693 0.726 0.879
facial 0.631 0.648 0.601 0.602 0.698

fashionmnist 0.831 0.911 0.842 0.896 0.929
gisette 0.855 0.883 0.877 0.878 0.923
hapt 0.553 0.903 0.750 0.781 0.942
image 0.734 0.779 0.882 0.874 0.954
isolet 0.659 0.971 0.962 0.927 0.975
letter 0.882 0.893 0.894 0.883 0.951

madelon 0.523 0.505 0.506 0.501 0.614
mfeat 0.963 0.972 0.985 0.986 0.988

microv1 0.532 0.897 0.947 0.946 0.939
microv2 0.632 0.891 0.948 0.951 0.951
mnist 0.828 0.966 0.923 0.944 0.978
musk 0.912 0.964 0.938 0.901 0.947
nomao 0.797 0.817 0.804 0.849 0.914
semeion 0.732 0.926 0.894 0.884 0.945

Table 15
SVM classification results of ClEnDAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset PCA LDA ISOMAP LLE ClEnDAE

arcene 0.531 0.545 0.721 0.722 0.642
batch 0.983 0.980 0.983 0.892 0.985

coil2000 0.493 0.500 0.500 0.500 0.500
dota 0.517 0.529 0.547 0.548 0.553
drive 0.978 0.979 0.981 0.982 0.972
facial 0.672 0.703 0.697 0.501 0.742

fashionmnist 0.921 0.935 0.929 0.934 0.943
gisette 0.925 0.941 0.962 0.963 0.972
hapt 0.788 0.875 0.859 0.869 0.902
image 0.850 0.862 0.784 0.620 0.891
isolet 0.958 0.965 0.963 0.966 0.980
letter 0.812 0.839 0.842 0.852 0.861

madelon 0.557 0.585 0.547 0.523 0.594
mfeat 0.926 0.962 0.980 0.981 0.985

microv1 0.731 0.876 0.953 0.953 0.925
microv2 0.652 0.791 0.832 0.835 0.893
mnist 0.971 0.979 0.829 0.976 0.986
musk 0.955 0.958 0.959 0.954 0.962
nomao 0.929 0.930 0.933 0.925 0.935
semeion 0.936 0.957 0.929 0.949 0.959

Table 13 (continued)

Dataset Plain Data DAE ClEnDAE

microv1 0.838 0.849 0.880
microv2 0.736 0.845 0.863
mnist 0.965 0.975 0.977
musk 0.800 0.883 0.886
nomao 0.886 0.877 0.889
semeion 0.716 0.739 0.751
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Table 16
MLP classification results of ClEnDAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset PCA LDA ISOMAP LLE ClEnDAE

arcene 0.521 0.512 0.691 0.673 0.525
batch 0.915 0.512 0.919 0.566 0.926

coil2000 0.500 0.500 0.500 0.500 0.500
dota 0.524 0.525 0.527 0.525 0.538
drive 0.941 0.883 0.802 0.809 0.772
facial 0.692 0.704 0.707 0.697 0.716

fashionmnist 0.902 0.909 0.898 0.905 0.914
gisette 0.602 0.612 0.609 0.605 0.682
hapt 0.834 0.839 0.840 0.836 0.857
image 0.881 0.552 0.672 0.645 0.888
isolet 0.849 0.819 0.791 0.805 0.869
letter 0.713 0.732 0.739 0.722 0.748

madelon 0.577 0.582 0.556 0.512 0.641
mfeat 0.921 0.953 0.974 0.964 0.975

microv1 0.694 0.701 0.829 0.868 0.711
microv2 0.731 0.720 0.740 0.733 0.742
mnist 0.902 0.906 0.893 0.896 0.906
musk 0.992 0.991 0.994 0.952 0.999
nomao 0.913 0.915 0.911 0.914 0.653
semeion 0.820 0.849 0.746 0.822 0.789

Table 17
C4.5 classification results of ClEnDAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset PCA LDA ISOMAP LLE ClEnDAE

arcene 0.654 0.662 0.766 0.695 0.699
batch 0.971 0.973 0.980 0.975 0.984

coil2000 0.509 0.504 0.507 0.500 0.521
dota 0.527 0.531 0.503 0.515 0.546
drive 0.936 0.938 0.954 0.947 0.884
facial 0.626 0.651 0.635 0.632 0.672

fashionmnist 0.872 0.883 0.879 0.881 0.889
gisette 0.682 0.705 0.692 0.709 0.749
hapt 0.797 0.791 0.792 0.788 0.802
image 0.913 0.922 0.774 0.838 0.874
isolet 0.840 0.859 0.851 0.862 0.878
letter 0.783 0.811 0.793 0.805 0.821

madelon 0.626 0.677 0.652 0.631 0.553
mfeat 0.889 0.898 0.892 0.895 0.931

microv1 0.731 0.806 0.685 0.868 0.880
microv2 0.835 0.837 0.815 0.838 0.863
mnist 0.869 0.872 0.876 0.871 0.977
musk 0.891 0.927 0.897 0.915 0.886
nomao 0.881 0.862 0.767 0.872 0.889
semeion 0.729 0.739 0.744 0.731 0.751

Fig. 17. Critical distance between dimensionality reduction methods for kNN, SVM, MLP and C4.5.
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Appendix A. Result tables

This appendix contains the results tables associated with the experimentation presented in Section 4. In particular, A.1
includes the results tables of SubSection 4.2, and A.2 presents the data associated with the experimentation described in
SubSection 4.4.

A.1. Classification Algorithms Analysis

This appendix provides Tables 10–13. The data describe the results achieved in the experimentation for the algorithms
kNN, SVM, MLP and C4.5, respectively. The structure of all tables is similar. The classification results (AUC) generated with
the ClEnDAE model, the basic DAE and the raw data are presented in a figure, and the best results are highlighted in bold for
each dataset.

Tables 10–13 allow us to observe that the best performance is obtained with the ClEnDAE method in most cases. These
results are discussed in SubSection 4.2 in more detail.

A.2. ClEnDAE vs classical feature extraction techniques

In this appendix, classification results for the different datasets are gathered in Tables 14–17. There is a table for each
classifier: kNN, SVM, MLP and C4.5, respectively. Besides, each one presents the predictive performance generated from
the following models: the proposal of this study, ClEnDAE, and the traditional dimensionality reduction approaches, PCA,
LDA, ISOMAP and LLE.

These outcomes have been analyzed in Section 4.2. Generally, it is possible to note that the ClEnDAE algorithm obtains the
best results in almost every case, considering the four classifiers.
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