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Abstract. Datasets from real-world applications usually deal with
many variables and present difficulties when modeling them with tra-
ditional classifiers. There is a variety of feature selection and extrac-
tion tools that may help with the dimensionality problem, but most of
them do not focus on the complexity of the classes. In this paper, a new
autoencoder-based model for addressing class complexity in data is intro-
duced, aiming to extract features that present classes in a more separable
fashion, thus simplifying the classification task. This is possible thanks to
a combination of the standard reconstruction error with a least-squares
support vector machine loss function. This model is then applied to a
practical use case: classification of chest X-rays according to the pres-
ence of COVID-19, showing that learning features that increase linear
class separability can boost classification performance. For this purpose,
a specific convolutional autoencoder architecture has been designed and
trained using the recently published COVIDGR dataset. The proposed
model is evaluated by means of several traditional classifiers and metrics,
in order to establish the improvements caused by the extracted features.
The advantages of using a feature learner and traditional classifiers are
also discussed.
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1 Introduction

Data classification [3] is one of the most studied problems in machine learn-
ing, and is applicable in many real-world contexts such as medicine, banking,
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robotics, natural sciences and other industries. Class complexity [5,17] is a term
which encompasses all the intrinsic traits in data that can hinder the perfor-
mance of a classifier. There are several categories of metrics that can be used
to gauge the complexity of a dataset: feature overlap, linearity, neighborhoods,
dimensionality, class balance and network properties. Datasets that present high
levels of complexity in some of these categories have been shown to cause poor
classifier performance [14].

When it comes to addressing data complexity during a preprocessing [9]
phase, several specific methods can be found on the literature, but they usually
tackle high dimensionality (feature selection and extraction methods) and class
imbalance (resampling methods). Little research has been published on how to
address other complexity types during a preprocessing phase and most of it is
centered around feature selection [20,23].

In this work, we present Slicer (supervised linear classifier error reduction),
an automatic feature extractor designed with linear class separability in mind. It
is based on an autoencoder (AE) model [8], using a special loss function inspired
by least-squares support vector machines (LSSVM) [18]. The objective of this
model is to learn an alternative representation for each instance where classes are
more easily distinguishable. Once trained, the model is able to project any new
instance onto the learned feature space without knowing its class. This allows to
work with compact representations of the samples instead of the original, high-
dimensional ones, in a way that facilitates the work of traditional classifiers,
which are usually hindered by high dimensionality [4,6] unless they specifically
select features internally. Extracting features can also help when it is necessary
to combine variables from different sources (e.g. images and clinical data), and
working with traditional classifiers makes it easier to understand the decision-
making process.

The proposed model is applied in a specific use case, aiming both to analyze
the level of performance that could be gained and to open new possibilities for
combination of imagery and other data, as well as interpretability of classifiers.
The chosen application is recognition of COVID-19 in chest X-ray images, using
the COVIDGR dataset [19] for this purpose. The fitness of the set of features
learned by Slicer is evaluated by means of classification metrics using several
standard classifiers and is compared against using a basic AE and learning from
the original, unmodified features. The results show a noticeable advantage of
the Slicer-generated variables except when using support vector machines as
classifier, even though specific traits of this dataset such as “apparently negative”
positive samples might affect the learned representation.

The rest of this document is organized as follows. Section 2 describes the new
feature learner named Slicer. Afterwards, Sect. 3 outlines the main aspects of
the experimentation, including the dataset and the evaluation strategy. Section 4
discusses the results obtained in the experimentation above and, lastly, Sect. 5
draws some conclusions.
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2 Class-Informed Autoencoder for Complexity Reduction

This section is dedicated to introducing a new model designed to learn features
with improved class separability. The proposed model, Slicer, is based on the
minimization of the error of a linear classifier, at the same time that it attempts
to maximize its reconstruction abilities. As a result, the learned features are
influenced both by the overall information within the data as well as their relation
to the class.

2.1 Autoencoder Fundamentals

An AE is an artificial neural network that is trained to reconstruct the inputs
at its output [8]. It includes a certain bottleneck where the representation of the
data is somehow restricted: e.g. it is lower dimensional, more sparse or robust
against noise. This prevents the AE from simply copying the input instance
throughout the network. Instead, an encoder f learns a new representation for
the data while a decoder g must be able to recover the original features. This
transformation is learned by optimizing the reconstruction error JRE(x, (g ◦
f)(x)) which typically measures a distance between the original samples and
their reconstructions, but different penalties and regularizations can allow to
influence other aspects of the learned representation.

AEs are usually unsupervised tools, in the sense that they do not receive
any information about the labels of the data nor the desired encodings for each
instance. Their learning mechanism is, as a result, self-supervised [13]. This
means that they can be applied in many contexts where label information is not
necessarily available or just partially so: anomaly detection, semantic hashing,
data compression, among others [7]. Nonetheless, some AEs do use label infor-
mation [16], even though the objective is other than learning more separable
features. Our objective is to regularize an AE so that it learns from the class
labels during training, but does not need them during the prediction phase, and
thus facilitates classification tasks.

2.2 Slicer Model: The Loss Function

Slicer is an AE model regularized by a special penalty function which takes
class separability into account. In order to do this, an additional component is
introduced to simultaneously fit a LSSVM to the encoded samples as well as
evaluate the encoding based on the fitness of said classifier.

Figure 1 shows a diagram with the main components of Slicer. f represents
the encoder, which is a neural network that transforms the inputs onto encodings.
g refers to the decoder, a similar network whose objective is to reconstruct the
original data inputs out of the encodings. These encodings are also fed to a single
fully connected layer with no activation function, which acts as the support
vector machine. Each of the decoder and this last layer are evaluated with their
loss functions: the reconstruction error and the LSSVM minimization objective,
respectively.
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Fig. 1. Schematic illustration of the Slicer model

The reconstruction error chosen for the purposes of modeling input samples is
cross entropy: a measure of disagreement between two probability distributions,
for the case of Bernoulli distributions. It is usually the better option when all
values in each instance are in the [0, 1] interval. Its formulation for n instances
with k variables is shown in Eq. 1.
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If the variables are not scaled to the [0, 1], other reconstruction errors like the
mean squared error could be used.

For its part, the LSSVM objective assumes that labels are in {−1, 1} and is
simply a sum of quadratic errors e2i subject to the equality constraint 1 − ei =
y(i) − wT f
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)
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In the previous equation, f usually refers to the kernel used in the model but,
in this case, it represents the encoder of the neural network. w holds the weights
of the SVM, which are associated to a penalty with coefficient μ. The term that
compares classes (y) to the LSSVM output is weighted by ζ.

The resulting loss function for the Slicer model is the sum of both the recon-
struction error and the LSSVM loss:

J (x, y, θ) = JRE(x, θ) + JLSSVM(x, y, θ) (3)

3 Experimental Framework

The objective of this experimentation is to apply the proposed complexity reduc-
tion method in a real world practical case. In particular, we aim to improve the
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performance of simple classifiers when dealing with a chest X-ray image dataset
for COVID-19 classification. This would open several promising research lines,
such as the combination of these extracted features with other clinical and lab-
oratory variables or the possibility of using easily interpretable classifiers with
the generated features.

3.1 COVIDGR Dataset

The COVIDGR dataset of X-ray chest images was introduced in [19]. These
images were collected under a collaboration with expert radiologists of the Hos-
pital Universitario San Cecilio in Granada, Spain. In total, 852 images were
annotated under a strict protocol: positive images correspond to patients who
have been tested positive for COVID-19 using RT-PCR within a time span of at
most 24h between the X-ray image and the test. Every image was taken using
the same type of equipment and always with the posterior-anterior view. It is
important that all images are consistent since, otherwise, classifiers could find
cues to distinguish COVID-positive samples from negative ones different from
the intended aspects of the X-ray that characterize the pneumonia associated to
the disease [15]. Figure 2 includes one positive example and a negative one.

Fig. 2. A negative sample (left) and a positive one (right)

More information about class distribution is provided in Table 1. In the fol-
lowing experiments, the exact same partitions used in [19] are employed, in order
to ease comparisons with previous results.

3.2 Evaluation Strategy

Since the final objective of the proposed model is to improve classification perfor-
mance, the evaluation framework will consist in a variety of simple classifiers that
will be trained with either the original features or the encoded ones. Standard
classification metrics will be computed using the predictions over test subsets. A
5-fold cross validation scheme will be applied 5 times for a total of 25 train-test
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Table 1. Class distribution in COVIDGR dataset. Normal-PCR+ refers to X-rays
where COVID-19 was not detected by the experts but the patients tested positive.

Class #images Severities

Negative 426

Positive 426 Normal-PCR+ 76

Mild 100

Moderate 171

Severe 79

runs, so as to prevent errors from statistical chance. Table 2 lists the available
feature sets and every classifier and evaluation metric included in the experiment.
Each column is independent, in the sense that every feature set has been tested
with each one of the classifiers and the performance has always been assessed
with all four metrics.

Table 2. Evaluation framework: available feature sets, tested classifiers and evaluation
metrics. TP, TN, FP and FN denote true positives, true negatives, false positives and
false negatives, respectively.

Feature sets Classifiers Evaluation metrics

Original Decision tree (DT) Accuracy
TP+ TN

TP+ TN + FP + FN

Basic AE k nearest neighbors (kNN) Precision
TP

TP+ FP

Slicer Support vector machine (SVM) Recall
TP

TP+ FN

Gaussian process (GP) F1-score
2 · Precision · Recall

Precision + Recall

3.3 Architecture of the Slicer Model Used with the COVIDGR
Dataset

The proposed Slicer model has been implemented in the Python language on
top of the Tensorflow [1] library. Since the model needs to deal with image data,
the specific architecture makes use of convolutional layers for the encoder and
deconvolutional (or transposed convolutional) layers for the decoder.

More specifically, most of the AE is composed of residual blocks such as
the ones in the ResNet-V2 architectures [11], as can be seen in Fig. 3. The left
side of this diagram shows the detailed architecture of the AE-based model,
with the encoder ranging from the input to the dense layer with 128 units,
and the decoder from there to the last deconvolutional layer. The classification
component consists in the fully connected (dense) layer that maps the encoding
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to one variable and is then connected to the LSSVM loss. The overall loss is
simply the sum of both error measures, as explained above.

Input (1 channel)

7x7 conv, 8 /1

ResBlock, 8 /2

ResBlock, 8 /2

ResBlock, 16 /2

ResBlock, 16 /2

ResBlock, 32 /2

ResBlock, 32 /2

ResBlock, 32 *2

ResBlock, 32 *2

ResBlock, 16 *2

ResBlock, 16 *2

ResBlock, 8 *2

Dense, 128

Dense, 1

3x3 deconv, 1 *1

Upsampling *2

Reconstruction errorLSSVM error

ResBlock, k /2

BatchNorm, ReLU

3x3 conv, k /2

BatchNorm, ReLU

3x3 conv, k /1

Add

1x1 conv, k /2

ResBlock, k *2

BatchNorm, ReLU

3x3 deconv, k *2

BatchNorm, ReLU

3x3 deconv, k *1

Add

1x1 deconv, k *2

Fig. 3. Structure of the Slicer model used with the COVIDGR dataset. Each convo-
lutional and deconvolutional layer is followed by the number of filters as well as an
indication of the stride: /2 indicates a stride of 2 for a convolutional layer (the side
of the image is halved), and *2 indicates a stride of 2 for a deconvolutional layer (the
side of the image is doubled). Each of the residual blocks unrolls like the corresponding
diagram on the right.

Using the previous architecture, a model was trained for each training par-
tition of the total of 25 runs, using the parameters detailed in Table 3. Images
were resized to a common resolution of 512 × 512 pixels (in total, 262144 vari-
ables in the range [0, 1]), and the encoding size was of 128 variables, which gives
a reduction ratio of 1:2048, or equivalently, it represents the images using just
0.049% of the original variables. An equivalent basic AE was also trained using
the same architecture (except for the LSSVM layer and loss) and partitions.

4 Results and Discussion

In this section, the main results of the experimentation are analyzed. Table 4
contains average metrics for the total of 25 runs that were performed. We can
observe drastically different behaviors according to the classifier that was used:
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Table 3. Relation of hyperparameters. DA refers to data augmentation techniques
(only the techniques shown were applied).

Parameter Value

μ 0.01

ζ 0.1

Encoding dimension 128

Epochs 50

Batch size 8

Optimizer Adam

DA: random rotation ≤5◦

DA: horizontal flip Yes

kNN: k 5

DT: maximum depth 10

Image size 512 × 512

Table 4. Average classification metrics over 25 runs (5 times 5-fold cross validation).
Results from convolutional neural networks are reported in [19].

Classifier Features Accuracy Precision Recall F1-score

DT Original 58.098 58.259 57.470 57.665

DT Autoencoder 58.377 58.889 55.919 57.196

DT Slicer 58.593 58.837 57.422 57.988

GP Original 50.024 45.333 1.266 2.452

GP Autoencoder 50.024 4.000 0.047 0.093

GP Slicer 62.656 64.339 56.673 60.032

kNN Original 62.585 65.804 52.780 58.358

kNN Autoencoder 61.837 65.091 51.469 57.194

kNN Slicer 62.326 63.624 57.284 60.092

SVM Original 67.329 66.611 69.920 67.931

SVM Autoencoder 67.072 67.006 67.622 67.057

SVM Slicer 65.987 66.235 65.025 65.393

the decision tree had similar performance independently of the set of features
that were provided, while the Gaussian process only was competitive when using
the features learned by Slicer.

Several deductions can be made out of the results in Table 4. First, the clas-
sifiers that take the most advantage from the Slicer-generated features are kNN
and GP. In fact, the latter struggles to find an acceptable model of the data
using either the original features or the autoencoded ones. For its part, the DT
shows little variance with respect to the set of variables it uses, although the



Slicer: Feature Learning for Class Separability with LSSVM Loss 313

Slicer-generated has a slight lead in F1 score and accuracy. The SVM, however,
does not benefit from the more separable features and loses performance with
respect to the original and autoencoded ones.

Overall, it is not very surprising that the classifiers that are typically more
affected by the quality of features are those which benefit more from the encod-
ings provided by Slicer, whereas classifiers that internally perform their own fea-
ture selection or transformations either see small improvements or even decrease
their performance.

It is important to note that there exist specific deep learning architectures
designed for COVID-19 classification in chest X-rays, such as COVIDNet [21],
COVID-CAPS [2] and COVID-SDNet [19]. Comparing the classification perfor-
mance with these is out of scope for the present work, since we only aim to
assess how useful the features extracted by the Slicer model are for traditional
classifiers, not to find the best COVID-19 classifier.

As a summary, Table 5 displays the average metrics across all 4 classifiers,
for each feature set. The average ranking that each one achieved for each metric
is also shown. From this, we can conclude that the Slicer model produces feature
sets that are consistently superior to a basic AE. Furthermore, it is able to
preserve or even improve the quality of the original features, while simultaneously
reducing drastically the dimensionality.

Table 5. Average classification metrics per feature set provided to the classifiers. The
average ranking achieved by each feature set in each of the tests is shown in parentheses
(lower is better).

Features Accuracy Precision Recall F1-score

Original 59.509 (2.06) 59.002 (1.97) 45.359 (1.92) 46.602 (1.89)

Autoencoder 59.327 (2.09) 48.747 (2.16) 43.764 (2.38) 45.385 (2.29)

Slicer 62.391 (1.85) 63.259 (1.87) 59.101 (1.71) 60.876 (1.82)

5 Conclusions and Future Work

This work has presented a novel framework for class separability enhancement
using an AE-based model with a linear classification component that contributes
to the loss function. The model has been implemented as a convolutional AE
for the transformation of chest X-ray images onto a more manageable number
of variables in order to employ simple classifiers in COVID-19 classification.
An exhaustive experimentation has shown that the proposed model improves
classification performance over a basic AE with no regularizations and maintains
or even improves the performance compared to using the unprocessed data, even
though the number of variables is dramatically reduced.

The promising results lead to consider several ways of continuing the work
for practical real-world uses:
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– Analyze the impact of severity levels on the adequacy of the learned rep-
resentation. For example, Normal-PCR+ samples appear to look just like
negative ones, although they are positive, which could affect the behavior of
the model. Removing these images could provide better separation abilities
as a consequence.

– Learned features can be combined with other variables that do not come
from the chest X-ray, that is, clinical and laboratory data about each patient
such as age, gender, comorbidities, etc. Several scores for this kind of data
have been proposed but they do not take advantage of the full chest X-ray
information [10,12].

– Several ways to provide meaning to the extracted variables, such as feature
disentanglement [22], in combination with transparent classifiers like decision
trees, would enable more interpretable pipelines for COVID-19 classification,
where users could trace predictions back to the original features.

– Combining the proposed loss function with more advanced AE models such
as variational or adversarial AEs could add more potential of improving sub-
sequent classification tasks.
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