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a b s t r a c t 

In many machine learning tasks, learning a good representation of the data can be the key to building a 

well-performant solution. This is because most learning algorithms operate with the features in order to 

find models for the data. For instance, classification performance can improve if the data is mapped to a 

space where classes are easily separated, and regression can be facilitated by finding a manifold of data 

in the feature space. As a general rule, features are transformed by means of statistical methods such as 

principal component analysis, or manifold learning techniques such as Isomap or locally linear embed- 

ding. From a plethora of representation learning methods, one of the most versatile tools is the autoen- 

coder. In this paper we aim to demonstrate how to influence its learned representations to achieve the 

desired learning behavior. To this end, we present a series of learning tasks: data embedding for visual- 

ization, image denoising, semantic hashing, detection of abnormal behaviors and instance generation. We 

model them from the representation learning perspective, following the state of the art methodologies in 

each field. A solution is proposed for each task employing autoencoders as the only learning method. The 

theoretical developments are put into practice using a selection of datasets for the different problems 

and implementing each solution, followed by a discussion of the results in each case study and a brief 

explanation of other six learning applications. We also explore the current challenges and approaches to 

explainability in the context of autoencoders. All of this helps conclude that, thanks to alterations in their 

structure as well as their objective function, autoencoders may be the core of a possible solution to many 

problems which can be modeled as a transformation of the feature space. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Creating new representations of data is a fundamental task in

ost machine learning tasks. First off, certain types of problems

hat require a classifier or a regressor will certainly benefit from

ransformations of the features which facilitate their work [1] . In

ddition to this, there exists a variety of problems whose solution

elies strongly on finding an appropriate representation of the data.

lthough the use of representation learning techniques is mainly

sed as a complement to other learners in the former case, in

he latter one these methods become the focus. This work high-

ights some of these situations, with specific applications that can

e modeled as representation learning problems. 

The features that are used as input conform one of the most

mportant factors when building machine learning models. When
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he training set contains intact data from its collection or measure-

ents, it may not be ready for treatment yet. Instead, it is common

or data to be expressed with redundant or uninformative variables

nd for it to include some level of noise. These and other obstacles

resented by the data [2] are the reason why most of the manual

ork of building machine learning models is spent in the prepro-

essing stage [3] . 

The success of a classifier, a regressor or other models will

reatly depend on the quality of the features it can learn from.

or instance, decision trees, regardless of whether the task is clas-

ification or regression, attempt to find the most informative vari-

bles to branch at each step [4] ; support vector machines calculate

he hyperplane that best separates classes in a feature space orig-

nating from specific transformations of the original one [4] , and

-means clustering computes distances among pairs of instances

nd thus depends strongly on the input domain [5] . As a result, it

s of vital importance that the features provided to these learners

re useful and as independent as possible. 
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However, finding alternative representations for data is not only

a medium to build classification and regression models, but it may

be an end in itself in many applications. For example, finding com-

pact binary codes that represent text documents [6] , compressing

signals to a lower resolution without losing information [7] , trans-

forming the problem domain to a different one [8] , or producing

filtered versions of images with less distortions [9] . 

Learning representations usually consists in feature engineer-

ing [1] or feature extraction [10] , depending on whether new fea-

tures are computed manually by human intervention (either by

selection [11] or simple arithmetic operations) or they are gener-

ated, evaluated and selected by the machine. Feature engineering

leverages expert knowledge and human creativity in order to se-

lect features and operate with them in a way that results in a new

feature set which seems appropriate for predictors to work with.

Nowadays there exist many automatic approaches to feature learn-

ing, which relieve users from the tedious task of engineering new

features [12] . These methods range from probabilistic to topologi-

cal and from shallow to deep: principal component analysis [13] ,

Isomap [14] , locally linear embedding [15] and Laplacian eigen-

maps [16] , among others. 

With the introduction of deep neural networks, the repre-

sentation learning stage became integrated within the predictors

themselves [17] . These techniques iteratively optimize the classi-

fication performance by modifying the weights in several layers

of individual neurons which compute a hierarchy of abstractions

over the original data. For this purpose, the backpropagation al-

gorithm [18] allows to efficiently accumulate gradients along the

network, so that an optimizer such as Stochastic Gradient De-

scent [19] or one of its derivatives [20–23] may compute each

weight update. Since neural networks can be structured as needed

for each kind of problem, they are able to function as standalone

feature learners as well. This is the case of autoencoders (AEs) [24] ,

neural architectures whose objective is to find the best represen-

tation for the data according to the criterium defined by their loss

function. 

The objective of this paper is to analyze how AEs can serve

as the main basis for solving a wide variety of learning tasks and

demonstrate this with concrete applications and experimental re-

sults. Throughout the paper, we examine several case studies that

expose the adaptability of AEs to these problems. 

• First, an example of data embedding onto a very low dimen-

sional space for visualization and exploratory analysis. 

• Then, a case where noisy signals are to be repaired by the

model. 

• Later, a different example where very high dimensional sparse

data, such as text documents, is to be compressed onto com-

pact binary codes in a semantic way. 

• Additionally, we study anomaly detection, the situation where

abnormal patterns are to be detected in sequences but no

anomalies are available to learn from. 

• As a last case study, we propose the generation of new in-

stances which do not belong to the training set. 

Other applications are also briefly discussed: image superreso-

lution, image compression, transfer learning, human pose recovery

and recommender systems. 

As a starting point, we provide the reader with the necessary

background knowledge about the field of representation learning,

as well as a summary of the main features of AEs that make them

a good candidate model to solve the different problems later ap-

proached. The solutions to these tasks using AEs as the only au-

tomatic learner highlight their potential and flexibility as feature

extraction techniques. 

Following the current increase in search for developing explain-

able models [25] , the main approaches for obtaining interpretable
redictions are summarized, finding that quality features can be

he key to explainable solutions. AE models which can build help-

ul features are also highlighted. 

The rest of this paper is structured as follows. Section 2 de-

cribes the background of the problems and techniques above

ntroduced. Section 3 details the inner workings of AEs.

ection 4 further develops on several case studies where AEs re-

olve feature learning tasks and outlines other existing learning

pplications, and Section 5 describes the current state of the art

n explainable AI and how AEs are involved. Lastly, Section 6 con-

ludes the text. 

. Background: feature learning and deep representation 

earning 

This section explains some well-known methods that can ex-

ract features from data. Afterwards, it introduces deep learning

echniques. 

.1. Classical feature learning methods 

Traditionally, feature extraction methods have been developed

ith linear as well as nonlinear transformations of the vari-

bles [10] . They can be considered nonconvex or convex, accord-

ng to whether the objective function presents local optima or

ot, respectively [26] . Many of these techniques perform unsuper-

ised learning, but others are supervised [27–29] or even semi-

upervised [30] . Next, a summary of typical feature learning meth-

ds is provided. 

.2. Linear methods 

The most common linear feature extraction methods are the

ollowing. Principal component analysis (PCA) consists in ex-

racting successive variables or principal components with maxi-

um variance while being uncorrelated with the previous com-

onents. It is a statistical technique developed geometrically by

earson [31] and algebraically by Hotelling [32] , but an analytical

erivation can be found in [13] . Factor analysis [33] is a similar

rocedure to PCA which considers a set of latent variables or fac-

ors that are not observed but are linearly combined to produce

he final variables. Linear discriminant analysis [27] is a supervised

tatistical technique which attempts to find linear combinations of

eatures to project samples onto new coordinates that best dis-

riminate classes, albeit making some assumptions about the dis-

ribution of the data. 

.3. Nonlinear methods 

Some well known nonlinear approaches to feature extraction

re kernel PCA, restricted Boltzmann machines and manifold learn-

ng methods. Kernel PCA [34] extends PCA to nonlinear combina-

ions of features by projecting samples onto higher-dimensional

paces and using the kernel trick [35] . Restricted Boltzmann ma-

hines are undirected graphical probabilistic models, also known

s harmoniums [36] , with one visible layer and one hidden layer

hat acts as the set of extracted features. They can be trained us-

ng the contrastive divergence algorithm [37] . Many nonlinear fea-

ure learning methods attempt to find coordinates for a lower di-

ensional structure embedded in the original features, namely, a

anifold. Multidimensional scaling (MDS) is one of the first tech-

iques that can be considered manifold learning, as its objective

s projecting samples in a low-dimensional space while translating

s much information of pairwise distances as possible. There are

everal variants of MDS, one of them is Sammon mapping [38] ,

hich improves on MDS by using a different cost function which
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Fig. 1. Illustration of the general structure of a basic AE: an encoder and a decoder 

connected by the encoding layer. 

Table 1 

Intepretation of symbols used in the formulae. 

Symbol Interpretation 

θ Full set of parameters of the AE (weights and biases) 

X Set of input instances 

Z Set of instances in encoding space 

n Dimension of input space 

k Dimension of encoding space 

f Encoder mapping 

g Decoder mapping 

d Distance function in input space 

r Regularization function 
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tresses large distances similarly to small ones. Isomap [14] is a

ore recent extension of MDS which looks for the coordinates

hat describe the actual degrees of freedom of the data while

reserving distances among neighbors and geodesic distances (the

ength of the shortest path that connects two points in the man-

fold). Locally Linear Embedding [15] also seeks a manifold which

reserves neighbors but, in order to maintain the local structure,

t linearly reconstructs each point from its neighbors. Laplacian

igenmaps [16] is a procedure that builds a graph based on the

eighborhood structure of the data, and from it a weight matrix

hose eigenvectors can be used to compute new coordinates for

ach point. 

.4. Deep representation learning 

Deep learning architectures are hierarchies of abstractions of

he input feature space and, as such, they compute several trans-

ormations of the features before reaching a response. In some

ases, these can be seen as learned representations, since they

ust be able to capture the relevant information from each in-

tance in order to output an accurate result. This effect can be ob-

erved especially in convolutional neural network classifiers, which

re usually split into a feature extraction component formed by

onvolutional layers and a decision module composed by fully

onnected layers [39] . Apart from neural networks with other

bjectives such as supervised classification or regression, there

ave been different approaches to shallow as well as deep neu-

al structures for unsupervised feature learning [40] , such as self-

rganizing Kohonen maps [41,42] , predictability minimization [43] ,

estricted Boltzmann machines [44] , deep belief networks [45–

7] and AEs [4 8,4 9] . There have been many instances of these un-

upervised techniques being used to either pre-train or provide

eature transformations for supervised models [50] . 

AEs are probably the most versatile unsupervised neural net-

ork models. They essentially combine some kind of bottleneck or

estriction in the learned data representations with the objective

f reconstructing and repairing the original input from that repre-

entation [24] . There are several ways to impose restrictions that

roduce interesting representations, and the reconstruction objec-

ive will cause the network to retain all invariant feature infor-

ation along its weights, so that the representation or encoding

olds mainly instance-specific traits. For example, undercomplete

Es project inputs into lower-dimensional encodings, sparse AEs

btain representations with very few activated neurons, and de-

oising AEs attempt to repair partially corrupted data. 

Their versatility is demonstrated by the amount of applications

Es have and their diversity. Across the rest of this work, we focus

n certain applications of representation learning that are solved

ith AEs and we analyze how each model is built and trained. 

. Autoencoder fundamentals 

AEs are neural network structures designed with the purpose of

earning new features. Throughout the following subsections, their

ain characteristics and differentiating aspects are outlined, and

ome ways to influence the encoded variables are discussed. 

.1. Origin and essentials of autoencoders 

AEs were originally conceieved as a way of initializing neu-

al networks [51] and continued fulfilling that purpose for some

ime, serving as a starting point for training of deep networks as

ell [52] . Over the last years, other applications for AEs have been

merging and at the same time other approaches to neural net-

ork training and regularization have succeeded over AEs [53,54] .

s a consequence, the common uses for AEs have shifted from
elping train other neural networks to other applications of their

wn. 

In general, the training process required to learn an AE can be

nsupervised, that is, it does not need labels or class information

n order to generate a model for the data. Instead, it extracts use-

ul information from each instance by feeding its feature vector

hrough some transformations which impose a bottleneck or re-

triction on the possible representations it can compute. Then, the

epresentation is mapped to the original feature space through a

imilar set of transformations, and the AE is evaluated according

o the fidelity of the reconstruction. This feedback allows to mod-

fy the parameters iteratively until convergence is reached. 

AEs take the form of a neural network with at least one hid-

en layer and two components, an encoder and a decoder, which

re connected by the coding layer [24] . These components are usu-

lly symmetric in layer shapes to each other, especially if they are

mplemented as fully connected neural networks. In certain occa-

ions, even the weights of each layer in the decoder are tied to the

orresponding layer in the encoder. In general terms, however, it

uffices with the input layer of the encoding and the output layer

aving the same shape. Fig. 1 shows how the architecture of an AE

ay look like. 

In summary, an AE can be seen as the composition of an en-

oding map f which projects inputs onto a different feature space,

nd a decoding map g which operates inversely (see Table 1 for the

eaning of all symbols used below). The main objective of the AE

s to recover as much information as possible of the original input,

o it will attempt to minimize a distance between the inputs and

he outputs: 

in 

θ

∑ 

x ∈X 
d(x, g θ ( f θ (x ))) (1) 

The distance function d used in the loss function is usually ei-

her the mean squared error, see Eq. (2) , or the cross entropy,

hown in Eq. (3) . In the first case, data may not be normalized

nd the output units should use an unbounded activation function.
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For a cross entropy loss, each input and output variable is mod-

eled as following a Bernoulli distribution, so data should be scaled

to the [0,1] interval and output units could make use of a sigmoid

activation. 

The mean squared error for an input x and output x ′ of length

n is defined as: 

d(x, x ′ ) = 

1 

n 

n ∑ 

i =1 

(x i − x ′ i ) 2 (2)

Similarly, the binary cross entropy for the same input and output

is computed as: 

d(x, x ′ ) = −(x • log (x ′ ) + (1 − x ) • log (1 − x ′ )) , (3)

where • denotes element-wise product and all other operations are

also performed element-wise. 

3.2. Modeling the coding layer 

The main objective of the AE ( Eq. (1) ) only promotes faithful re-

constructions without explicitly considering any aspect about the

codes used. This can be enough in many cases where the codes

are low dimensional and they can capture only the relevant infor-

mation of the instances just by training to reconstruct accurately.

Notwithstanding, there are situations that require considering a

more general case of the objective, which allows penalizing cer-

tain behaviors of the encoding found by the network, or even the

values of the parameters themselves ( Eq. (4) ). 

min 

θ

∑ 

x ∈X 
d(x, g θ ( f θ (x ))) + r 1 ( f θ (X )) + r 2 (θ ) (4)

A straightforward example of this kind of restrictions is the

sparse AE [55,56] , which adds a penalty for high activation rates

in the neurons of the code layer ( Eqs. (5) and ( 6 )): 

r(Z) = 

k ∑ 

j=1 

(ρ − ρ j ) 
2 , or (5)

r(Z) = 

k ∑ 

j=1 

ρ log 
ρ

ρ j 

+ (1 − ρ) log 
1 − ρ

1 − ρ j 

, (6)

where ρ j = 

1 
|Z| 

∑ 

z∈Z z j is the average activation vector, k is the

length of the code and ρ is the desired activation rate. 

Other, more sophisticated variations on the AE with different

penalties are the contractive AE [57,58] , which promotes finding

and preserving any local structure from the original feature space,

and the variational AE [59] , which uses a penalty to impose a dis-

tribution to the codes computed by the encoder. 

Penalties on the codes are not, however, the only way of

incentivizing a behavior on the encoder mapping. Denoising

AEs [60,61] establish a slightly different criterion to evaluate the

performance of the reconstruction: the network must be able to

repair any noise or corruption from the input. Robust AEs [62] use

another objective function, correntropy [63] , which has a similar

effect in repairing several kinds of noise from the input data. 

3.3. Evaluation metrics 

The quality of learned features can be evaluated by the model’s

ability to project instances back to the original feature space. For

this purpose, regression metrics can be used. Some common met-

rics which serve to assess the usefulness of the learned features

are the following, where x is the original feature vector and x ′ is

the reconstruction, mapped from the encoding space back onto the

input space: 
• Mean squared error ( Eq. (2 )) and root mean squared error: 

RMSE (x, x ′ ) = 

√ 

1 

n 

n ∑ 

i =1 

(
x i − x ′ 

i 

)2 

• Mean absolute error: 

MAE (x, x ′ ) = 

1 

n 

n ∑ 

i =1 

∣∣x i − x ′ i 
∣∣

• Mean absolute percentage error 

MAPE (x, x ′ ) = 

1 

n 

n ∑ 

i =1 

∣∣∣∣x i − x ′ 
i 

x i 

∣∣∣∣
In certain cases, the encoded features can also be evaluated in-

ependently from the original features, by assessing their quality

ith respect to their complexity, class separability and overlap [2] .

his usually requires that data belongs to a classification problem

o that a class is defined for each instance. 

.4. Beyond unsupervised autoencoders 

Although the objective of an AE usually does not involve direct

rediction of labels, it can sometimes learn from classified exam-

les. The most straightforward way to introduce class information

nto the AE is to modify the loss function so it propagates differ-

nt errors according to the class of each instance. For example, we

ould weight each class differently. Assuming the classes are bi-

ary, dividing the dataset into X 

+ for positive instances and X 

−

or negative ones, and α is a parameter in [0,1], the objective in

q. (7) 

in 

θ
(1 − α) 

∑ 

x ∈X −
d(x, g θ ( f θ (x ))) + α

∑ 

x ∈X + 
d(x, g θ ( f θ (x ))) (7)

ould give more importance to reconstructing one of the classes,

hich may help if the aim is to find a manifold for that class and

he other one is less relevant. 

Several uses of label information can be found in the proposal

f the adversarial AE [29] . This AE has a similar behavior to the

ariational AE in that it also forces the codes to follow a given

istribution. Instead of using just a loss penalty, it adds a gen-

rator which samples the distribution, and a discriminator which

ttempts to distinguish distribution samples from codes belong-

ng to actual instances, analogous to a generative adversarial net-

ork [64] . The label information can be used then to locate each

abel in a region of the distribution, by feeding labels as well as

odes to the discriminator. Alternatively, labels can be feeded to

he decoder, which causes the codes to discard label information

nd instead model style in the data. 

Another step forward in introducing label information in AEs

ould be for them to be able to predict labels as well. Some work

as been already done along these lines, by training an encoder

nd decoder simultaneously to reconstruct and to produce codes

s similar as possible to the labels in a one-hot format [65] . 

. Learning task case studies 

The following subsections detail several real examples of appli-

ation of AEs: embedding data onto a very low-dimensional space

or visualization purposes, reducing the noise in images, comput-

ng semantic hashes for large text documents, finding anomalous

ehaviors in sequences and generating new instances outside the

raining set. For each application, a relevant dataset has been se-

ected and a model has been specifically designed to solve the

roblem. The basic traits of all chosen datasets can be found in

able 2 . 
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Table 2 

Main traits of datasets used for the experiments. 

Dataset Application Input features Training examples Test examples 

CPU Activity Visualization 21 6553 1639 

Satellite image Visualization 36 5142 1288 

STL10 [66] Noise reduction 96 × 96 × 3 5000 8000 

Bibtex [67] Semantic hashing 1836 5916 1479 

UNSW-NB15 [68] Anomaly detection 187 37000 175341 

AT&T faces Instance generation 64 × 64 400 –

Fig. 2. Example AE architecture. Each block represents a layer and is splitted into 

three parts: the meaning or purpose of the layer, the type of operation performed 

and its output shape (size of each dimension). 
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Fig. 3. AE architectures for visualization 
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1 CPU activity dataset is available at https://www.openml.org/d/573 . 
2 Satellite image dataset can be found at https://www.openml.org/d/294 . 
The models described below are each associated to a diagram

escribing the layer structure of the corresponding AE and the pur-

ose of each layer. Please refer to Fig. 2 for an example of how

ach model is detailed. 

All examples have been implemented and executed employing

he following setup: Tensorflow [69] 1.14.0 and Keras [70] 2.2.4 on

op of Python 3.7 and R 3.6, running on an Intel Core i5-8400 CPU

nd a NVIDIA GeForce RTX 2060 GPU. The associated software can

e found at the following GitHub repository: https://github.com/

ri- dasci/autoencoder- case- studies/ . 

.1. Data visualization 

Most of the data collected nowadays, either from industries or

rom the web, is high-dimensional. Visualization techniques can

elp its interpretability, but the data generally needs to be sum-

arized for this purpose. Traditionally, an alternative represen-

ation would be a subset of its features or its principal compo-

ents [71] . An AE, however, is able to automatically compute a

epresentation that fits each dataset. This representation can be 2

r 3-dimensional if the AE is configured conveniently [72] , or if

nother embedding technique (such as t-SNE [73] ) is used after a

igher-dimensional encoding. 

In particular, if our dataset consists of instances ( x, y ) where

 is a feature vector and y is its associated label, we can use a

raining subset to learn an autoencoder model with an encoding

f : R 

n → R 

2 resulting of the composition of the hidden layers up to

he code layer. Then, encoded examples can be colored in a scatter

lot according to their class. 

Although a simple AE could fulfill the embedding task, it can

e convenient to restrict or modify its behavior so as to influ-

nce the projection to the embedding space, in a way that im-

roves how the populated regions in the original space are mod-

led. Along these lines, there are several approaches: denoising cri-

eria [60] , contractive regularizations [57] and embedding regular-

zations [72] . 

.1.1. Denoising criterion 

A denoising AE [60] trains, as briefly explained in Section 3.2 ,

y reconstructing partially corrupted inputs. In order to do this,

 corruption or noise function introduces alterations on the input

ata: for example, a Gaussian noise ξ ~ N (0, σ ) would be used

o produce the input ν(x ) = x + ξ . The reconstruction error is now

omputed as 
∑ 

x ∈X d(x, g( f ( ν(x ) ))) . During the training process,

he AE is forced to distinguish useful information from mere per-

urbations of the data. If the instances lie on a manifold in the

riginal feature space, this can effectively train the AE to “push

ack” instances to the manifold by discarding small displacements
rom it. This can remove noise in the inputs as well as reconstruct

ome missing values if inputs are just an estimation [9,74] . As a

esult, the encoding can serve as a set of coordinates for the man-

fold. 

.1.2. Contractive regularization 

The contractive AE [57] uses an additional penalty in the train-

ng objective which promotes local invariance to displacements in

any directions around the training samples, i.e., it is less sensi-

ive to small perturbations especially in directions that lead out-

ide the manifold. The penalty consists in the squared Frobenius

orm of the Jacobian matrix of the encoder, that is, the sum of

he squares of all first-order partial derivatives applied to all in-

uts: �x ‖ J f ( x ) ‖ 2 . This can be seen as a generalization of L2 weight

ecay to the case where the encoder is nonlinear. This regulariza-

ion favors encodings where all dimensions are contracted, but the

econstruction error prevents the AE from contracting dimensions

long the manifold. 

.1.3. Embedding regularization 

An alternative objective function for AEs can be the same loss

unction from other embedding techniques. This is the idea be-

ind embeddings with AE regularization [72] , which combines the

econstruction error with one of several possible embedding loss

unctions coming from Laplacian eigenmaps [16] , multidimensional

caling [75] and margin-based embedding [76] . These loss func-

ions evaluate the embedding by taking pairs of instances, and the

E is adapted the same way, by computing the embedding loss

cross all pairs of instances and the reconstruction loss across all

nstances. 

For the purposes of demonstrating the capacity of AEs to find

anifolds and appropriate embeddings, we have selected a regres-

ion dataset, CPU activity 1 , and a classification dataset, Satellite im-

ge 2 . The AE used to find embeddings is the contractive AE. AEs for

oth datasets have been designed using the same criteria: three

idden layers, the encoding layer having 2 variables and the rest

aving as much variables as needed so that the compression ra-

io from the input to the first hidden layer is the same than from

he hidden layer to the encoding layer. The resulting architectures

re detailed in Fig. 3 . The AEs have found the projections shown

n Fig. 4 , where the label of each instance is used to color each

https://github.com/ari-dasci/autoencoder-case-studies/
https://www.openml.org/d/573
https://www.openml.org/d/294
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Fig. 4. Embeddings learned by an unsupervised contractive AE. The top image 

shows the projection of the CPU Activity dataset where each point has been shaded 

according to the level of user activity. The bottom image displays the projected 

samples of the Satellite Image dataset, each one colored according to its class. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Mean squared error comparison between the reconstructions of a contractive AE 

with a 2-variable encoding and the projections to the original feature space from 

the two principal components of the data. Lower values are better. 

Method Mean squared error 

CPU Activity Satellite 

Train Test Train Test 

PCA 0.5577 0.5097 0.1475 0.1483 

Basic AE 0.5238 0.4729 0.1136 0.1160 

Contractive AE 0.5053 0.4546 0.1132 0.1157 
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point. Notice that the AEs have trained without the respective tar-

get variables, but there appears to be some degree of separability

of classes and different values of the regression variable in each

graph. 

In order to verify to a certain degree that these embeddings, in

addition to producing meaningful visualizations, contain the neces-

sary information about the data, the mean squared error between

each instance and its reconstruction through the AE can be com-

puted. As a reference for comparison purposes, the same recon-

struction error can be computed from the two first principal com-

ponents of the data and from the encoding found by a basic AE.

Table 3 holds these results, which are very favourable to the con-

tractive AE, since the error is lower in every case. The difference
mong both AEs is small, but it serves to deduce that the contrac-

ive penalty in the AE does not hinder the reconstruction objective,

nstead it helps obtain useful low-dimensional embeddings. 

.2. Noise reduction 

Similar to searching for interesting representations of data in

he encodings of an AE, we can look for a reconstruction that adds

alue to the input data. One way an AE can help with this is to

emove noise from its inputs. This is especially useful when dealing

ith images [9] , sound [77] and other kinds of signals [78] , since

apture methods usually may introduce some noise and it would

e desirable to have a clearer and sharper output. 

In general, an AE can be trained to be resilient to input pertur-

ations with a mere random additive noise at the input. Through-

ut the optimization stage, the AE only takes as input partially cor-

upted versions of the training examples and attempts to recon-

truct the original ones. Once trained, this AE does not necessarily

xpect more noisy data, but instead it will have learned to be ro-

ust against small changes in its inputs. This type of AE is usually

alled a denoising AE, and performs well in many scenarios that

o not necessarily involve treatment of noisy data [61] . 

In this case, nonetheless, the goal is to eliminate potential per-

urbations in the inputs. Unlike a generic noise reduction filter,

hich will perform similar operations no matter what data it re-

eives, a denoising AE can be fitted to a specific training set and

ay thus be more reliable with different kinds of data. More for-

ally, we consider a noise function ν , which generates the cor-

upted data that the autoencoder trains with to minimize 
 

x ∈X 
d(x, g( f (ν(x )))) 

he following are some possible noise functions that may be ap-

lied: 

• ν(x ) = x + ξ where ξ is sampled from a Gaussian distribution

with small variance 

• ν(x ) = x + ξ ′ where ξ ′ is sampled from a Cauchy distribution

with small scale 

• ν(x ) = 

{
0 with low probability x otherwise 

• ν(x ) = 

{
0 with low probability 1 with low probability x otherwise

Notice that the Gaussian and Cauchy distributions will usually

nduce small changes to most inputs, while the zero and zero-one

oises will leave most values intact but the change in the cor-

upted ones will be more drastic. Thus, for a given application, a

pecific type of corruption function can be selected so that it fits

est to the types of noise the samples could have. 

When using denoising AEs, it is also convenient to adapt the

ype of layers used to the kind of data. For instance, a convolu-

ional AE would be best for noisy images, and an LSTM AE for

orrupted signals or sequences. Fig. 5 details a possible encoder-

ecoder structure for a denoising AE which uses convolutional lay-

rs in the encoding phase as well as deconvolution operations dur-

ng decodification. 
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Fig. 5. Denoising AE architecture for noise reduction. 

Fig. 6. Random selection of test examples (first and third rows) and their recon- 

structions (second and fourth rows) via forward passes through the denoising AE. 

Table 4 

Summary of results for noise reduction (average values and standard deviations 

are provided). Original images without noise are the reference for measuring the 

mean squared error, and the noise reduction is computed for each image as the 

percentage decrease in this error. Images are represented by their RGB values from 

0 to 255. 

Images Mean squared error Noise reduction 

Reference 0 100% 

Noisy 1656.08 ± 696.31 0% 

Basic AE 576.68 ± 156.53 62.14% ± 9.54 

Denoising AE 159.74 ± 74.55 88.94% ± 6.38 
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Fig. 7. AE architecture for semantic hashing. 
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When this AE is trained with data from the STL10 dataset [66] ,

 subset of the ImageNet dataset, the objective function will force

t to configure its weights so that input noise is reduced along the

etwork. The noise used in this case has been zeros with a proba-

ility of 0.1. The test images measure 96 × 96 pixels and have also

een corrupted with around 10% of noisy values, which can affect

ny color channel, so each pixel has a 30% likelihood of having any

f its 3 values altered. The AE was trained during 10 epochs with

he training data using optimizer Adam. 

The results can be analyzed in Table 4 , which shows the de-

igned AE achieves a reduction in the mean squared error of about

9%. For comparison purposes, a basic AE has also been trained

ith Fig. 6 displays some of the test inputs together with their re-

onstruction by the network. The resulting reconstructions remove

ost of the noise and appear slightly softer than the originals. 

.3. Semantic hashing 

Hashing usually refers to the process of summarizing large

atches of data in smaller or simpler codes. Hashes are employed

n data structures for fast search times, they can be used to find

uplicates and to protect data against corruption and manipula-

ion. 

This task in particular, semantic hashing [6] , involves finding bi-

ary codes which form buckets of similar data, i.e. when two data

oints are similar to each other, there is high probability that they

ill be assigned the same hash. Furthermore, if two similar data
oints are not hashed identically, their hashes will likely differ in

nly a few digits. In consequence, a way of finding instances sim-

lar to a query instance is to hash it and look for those whose

ashes are the same or almost identical. This is the opposite of

ryptographic hashing [79] , where the likelihood of two similar en-

ries obtaining the same hash is almost zero and there is no way

f retrieving a document from its hash. 

The idea of finding semantic relations between data points is

specially useful in document searches: if a query document is

rovided, then the search method should find those documents in

he dataset which match as closely as possible. It is also of applica-

ion in an image domain, where finding matching binary sequences

s much more efficient than comparing two pictures [80] . 

The approach described in [6] uses a very simple AE archi-

ecture, with an added noise generator after the encoding which

orces the encoder to polarize its outputs. 

In this case, the Bibtex dataset [67] was selected to illustrate

he application. Fig. 7 shows the AE architecture that was de-

ned for this purpose. The input data provides 1836 binary fea-

ures which are then projected onto a smaller feature space and

astly onto a 7-dimensional encoding, which is in turn slightly cor-

upted before decoding. The noise introduced in the encoding dur-

ng training requires it to take extreme values, for the noise not to

ffect the reconstruction. 

In order to assess whether the trained model serves the pur-

ose of semantic hashing, we can group all possible pairs of hashes

ccording to their Hamming distance (e.g. 0 0 010 0 0 and 0 010 01 are

 digit away from each other, while 1010101 and 0101010 are sep-

rated by a Hamming distance of 7). Then, we measure the inter-

luster distance between those pairs of hashes, computed as the

ean cosine distance from each instance in the first cluster to each

ne in the second. Assuming the clusters group similar instances,

he intercluster distance should increase along with the Hamming

istance. The distances for this example are illustrated in Fig. 8 ,

hich indeed shows simultaneous growth of both. 

In addition to quantitatively evaluating the quality of the model,

t can be qualitatively analyzed in order to verify whether semantic

ashing indeed groups topics in similar hashes. One way of doing

his is computing the term frequency-inverse document frequency

ndex (tf-idf) [81] of the words for each cluster. This way, words

hat are frequent within a cluster but uncommon along the rest of

he test set are considered the most relevant words. Table 5 shows

 truncated list of hashes used by the AE to cluster documents,

long with their most relevant words ranked by tf-idf. 

.4. Anomaly detection 

Sometimes the objective of a machine learning task is to find

nusual behaviors or abnormalities in data, for example, detecting

 possible security attack by analyzing server logs, or identifying

are patterns in medical checks. This is known as anomaly detec-

ion because the cases of interest are few in contrast to the amount

f normal instances, and even in some cases there are no anoma-
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Fig. 8. Intercluster cosine distance boxplot according to the hamming distance be- 

tween hashes. Blue diamonds indicate the mean cosine distance among all pairs of 

clusters that differ in k digits where k is a Hamming distance. Gray dots indicate 

outlier cosine distances. 

Table 5 

The first 15 hashes used as semantic codes for clusters found by the AE, ordered 

in Gray code. The most relevant words are selected according to tf-idf computed 

for each cluster. They show some common topics between hashes 0 0 01110 and 

0 0 01010, and between 0 0 0 0 0 01, 0 0 010 01 and 0 0 010 0 0. 

Hash Relevant words 

0000001 thermodynamic, transitions, induced, generalized, 

completely, interacting 

0000011 relaxation, barrier, mainly, contribute, surfaces, rights 

0000010 lipoproteins, capacity, oxidation, apo, receptor, recognized 

0000110 identifying, amino, united, capable, matrix, region 

0000111 carbon, storage, enzymes, assessed, notes, roles 

0000101 infrastructure, configuration, challenge, location,qualitative, 

improvement 

0000100 innovation, construction, ontologies, communities, 1999, 

located 

0001100 mining, advances, bioinformatics, er, solved, intelligence 

0001101 reuse, object, perspectives, intelligent, notes, logic 

0001111 trans, reading, behavioral, cultural, 1997, gap 

0001110 ss, siamese, betta, splendens, male, fighting 

0001010 siamese, ss, fighting, male, display, fish 

0001011 treated, barrier, combines, electrostatic, solvent, molecule 

0001001 thermal, boltzmann, origin, bulk, fluctuations, disorder 

0001000 numerically, temperatures, exact, magnetic, glass, zero 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Denoising AE architecture for anomaly detection. 

Fig. 10. Precision-recall curve for the detection of individual anomalies in the 

UNSW dataset. 
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lies to train with. In this situation, a traditional classifier cannot

solve the problem since it will not be able to assign a class it has

not seen before. 

An approach to anomaly detection without previously observed

anomalous cases is to model those considered typical, and mark

as anomalies those instances which do not fit the model. An AE

can be used for this purpose, since it can be trained to accurately

encode and reconstruct instances following a certain distribution.

When the AE is feeded new instances, it is assumed that recon-

struction of anomalous data will not be as accurate, since it should

follow a different distribution [82–84] . More formally, the hypoth-

esis of this methodology is that, when trained with normal data,

d ( x, g ( f ( x ))) will be very small when x is normal and very high

when x is anomalous. 
An useful application of anomaly detection where real world

ata will generally lack anomalies is network intrusion [85,86] ,

hat is, the detection of potential security attacks and malicious

ccesses to a server. The straightforward approach is to continu-

usly log server accesses, and extract data from a period of time

here usage has been normal. By means of these data, an AE can

e trained to recognize typical usage parameters. Then, new log

ccesses are constantly feeded to the AE in order to predict their

econstruction error. In the case that several successive errors are

uch higher than the mean, an attack may be underway. 

The AE used for this purpose will work as follows: the encoding

ayer will perform a drastic dimensionality reduction in order for

t to model the most essential information from the training data,

hich does not include any anomaly. This should help have low

rror rates on normal data, similar to training instances, but very

igh ones on anomalous data. In general, this may not work well

or uncommon, isolated anomalies, but it is useful when anomalies

re several in sequence, so this strategy is especially designed for

ime series data. 

The dataset treated in this example is UNSW-NB15 [68] , which

as 3 nominal variables and 42 numerical descriptors. Since AEs

annot work directly with nominal variables, these have been con-

erted into dummy binary variables. In addition, any anomalous

ata from the training subset has been removed. In total, 370 0 0

nstances with 187 features are being introduced as the training

nput of the AE, whose architecture is shown in 9 . The extraction

f two features is sufficient to model an approximation of most of

he normal data, but cannot preserve enough information for the

econstruction of most anomalies. 

The results of training this model are summarized in Figs. 10

nd 11 . The first is a precision-recall curve which gives details

bout the fraction of detections which are actually anomalies and

he ratio of detected anomalies among all of them. We find that

t is possible to detect more than half the anomalies without ob-

aining too many false alarms. Since the test dataset contains many

ore anomalies than normal instances and the objective is to de-

ect abnormal sections more than to find every individual anomaly,



D. Charte, F. Charte and M.J. del Jesus et al. / Neurocomputing 404 (2020) 93–107 101 

Fig. 11. Reconstruction error of the AE during test. The graph on the left shows the reconstruction error of each request in sequence, where the detection threshold is set to 

the mean training error plus 6 times its standard deviation. The histogram on the right shows the amount of hits and misses according to the reconstruction error. 
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Fig. 12. Variational AE architecture for instance generation. The sampling layer 

draws a sample from the vector of normal distributions with means and variances 

given by the previous layer. 
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3 AT&T faces dataset is available at https://www.openml.org/d/41083 . 
 recall of around 50% could be enough as long as the precision is

igh so that few false alarms are raised. 

Indeed, Fig. 11 graphs the reconstruction error for each test

nstance and shows that when an adequate threshold is chosen,

nomalous sections can be easily detected with very few isolated

alse alarms that can be discarded. In this case, the chosen thresh-

ld is the mean reconstruction error plus 6 times its standard de-

iation, but it could be tuned high or low in order to adjust the

ensitivity of the detection. 

.5. Instance generation 

The representation learned by an AE may be useful to encode

r reconstruct individual instances from a training set, but in cer-

ain cases it will be very convenient to ensure that this representa-

ion is actually attempting to perform some kind of manifold learn-

ng, mapping the feature space onto a smaller space in a way that

akes sense to work with the whole encoding space. This encod-

ng space would allow to predict a reconstruction for encodings

hat do not come from an instance in the original feature space,

nd still produce a coherent result. For instance, an useful applica-

ion would be to generate new images of faces similar to those in a

raining set but not identical to any of them. This is usually harder

o achieve with simple operations such as interpolation, because

hey would compute many images that do not represent faces. 

There are several variants of AEs that can fulfill this purpose,

amely variational [59] , adversarial and contractive AEs. Varia-

ional as well as adversarial AEs force a prior distribution in the

ncodings in different ways, which allows to sample new instances

y taking points from this space and projecting them onto the

riginal feature space via reconstruction ( g ). The contractive AE,

n the contrary, only imposes a regularization which promotes in-

tances to be mapped to encodings near their neighbors. This helps

he autoencoder perform transformations that find manifolds in

he data, since local structure is preserved. The manifold can then

e traversed in order for the decoder to generate new instances. 

Variational AEs are stochastic in the sense that they do not map

ach instance to a single point in the embedding space, but a dis-
ribution instead. This is usually a normal distribution, defined by

ts mean and standard deviation. Then, a reconstruction is pro-

uced by sampling that distribution and propagating the results

hrough the decoder network. The objective function in this AE

ombines the clustering behavior of the reconstruction loss func-

ion with a regularization loss which forces the distribution to be

s similar as possible to, generally, a multivariate unit Gaussian.

his helps the AE extract a very compact representation which

nly preserves the necessary information to provide a reconstruc-

ion of the input. 

In this example, a variational AE following the structure in

ig. 12 is trained to generate human faces that do not belong

o any person, since they will not be present in the training

ataset. The input data used during training belong to the AT&T

aces dataset 3 , also known as Olivetti faces dataset. The resulting

odel can be sampled by feeding arbitrary values to the generator

https://www.openml.org/d/41083
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Fig. 13. Faces sampled from the encoding space of a variational AE, using interpo- 

lations between the projections of images in the original dataset. 
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component, which then outputs previously unseen images. Fig. 13

shows some representative examples of the generated faces using

this AE. 

4.6. Other applications 

Apart from the previous selection of applications approached

with representation learning techniques based on AEs, there are

many other situations where AEs can be applied to extract features

from data. The following are learning applications present in the

literature that fell out of the scope of this article. 

4.6.1. Image superresolution 

This problem consists in building a high resolution image from

a low resolution sample, such as a thumbnail. By using an AE

trained with low resolution images and another with the high res-

olution ones, a map can be trained from the first encoding to the

second [87] . This way, the encoder from the first AE can be con-

nected to the decoder from the second AE and the resulting net-

work can be fine-tuned. During prediction it suffices with feeding a

low resolution image through the new network, which will encode

it and decode it through the high resolution decoder, producing a

higher quality image. 

4.6.2. Image compression 

Images are usually compressed with algorithms designed for

this specific purpose, e.g. the JPEG standard [88] . Since a com-

pression mechanism must include a component which compresses

the image and another which performs decompression, AEs can be

trained in different ways to treat this problem as well [7,89,90] ,

even surpassing the capacity of JPEG20 0 0 especially at low bit

rates. 

4.6.3. Transfer learning 

In a transfer learning task, the learner must make use of the

knowledge extracted from data in a given domain to apply it to a

different domain. This may consist in using pre-trained networks
ith a large dataset to use them with a small dataset by a fine-

uning process. However, when labels for the large dataset are not

vailable, the first stage will necessarily be unsupervised [50] , in

hich case an AE can be trained and its extracted features can

nitialize a network for a supervised problem with a dataset from

ther domain. 

.6.4. Human pose and facial features 

Human pose recovery is an application specific to image and

ideo data where people appear and the aim is to recognize the

ose of each person from the visual information, i.e., to generate a

keleton describing the position and orientation of the legs, arms

nd the rest of the body. One of the challenges is to model this

keleton as a 3D object while images are only 2D. AEs have been

sed as the core of a human pose recovery model [91] for extract-

ng an inner pose representation which then maps onto a repre-

entation of the 3D pose and is decoded as a 3D pose. This process

s, in fact, achieved with two AEs, one for each inner representa-

ion required, which are then connected through the representa-

ion mapping. In a similar way, facial expression recognition aims

o identify the human emotional state from facial images. An ap-

roach based on deep sparse autoencoders [92] , which are used to

xtract robust and discriminative features, has been developed to

ackle this task. 

.6.5. 3D shape learning 

Extracting features from three-dimensional shapes usually has

 high computational cost but it is fundamental for tasks such as

D object retrieval and matching. There are several AE-based mod-

ls for automatic feature extraction that can help model this type

f data [93–95] . These range from simple stacked AEs to combina-

ions of convolutional AEs and extreme learning machines. In gen-

ral, retrieving similar objects to a given input consists in encoding

he input and comparing the result to the codes of known objects

n order to find the nearest or most similar ones. 

.6.6. Recommender systems and tagging systems 

Recommender systems are filters that seek to predict user pref-

rences for products, taking into account previous choices or rat-

ngs. Collaborative filters for recommendation combine the infor-

ation of different users to build predictions. In [96] , a collabo-

ative variational AE for recommendation is developed. It models

he implicit relationships among items and users by making use

f a shared latent representation and the variational regulariza-

ion. A task similar to recommendation is tagging, since tags can

e ranked for an item according to its similarity to other items.

Es have been also used as the core of tagging systems [97] using

enoising AEs and relational denoising AEs. color 

. Challenges for autoencoder progress and prospects on 

xplainability 

Along this section, several difficulties and consequences of us-

ng AEs in machine learning are explored. Some brief comments

re provided beforehand on the current state of explainability and

ransparency in artificial intelligence (AI), in order to understand

ow they could affect the way AEs are designed and used. 

First, we introduce the most popular approaches to finding

ransparent and explainable machine learning models. Later, we

evelop on the ways AEs can help build interpretable solutions to

ifferent problems, by learning disentangled and fair features. 

.1. State and prospects on explainability 

Explainable AI [25] encompasses many concepts around the

dea that people should be able to understand how trained ma-

hine learning models work and why they make their decisions. 
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The recent surge in interest in explainable models derives from

he bias found in existing models as well as the search for AI

afety [98] . The first issue involves models that make decisions

otentially affecting human beings and those decisions can dis-

riminate against certain population groups, e.g. people of color or

omen. For instance, a prediction model for criminal recidivism

as found to be heavily biased against African-American people

99] . The second concept relates to the presence of relatively au-

onomous agents, such as robots, which execute the actions com-

uted by a machine learning model. These models sometimes find

nexpected ways to optimize their reward function (reward hack-

ng) [100] , even without completing the objective or having other

otential consequences (side effects). 

.1.1. Model transparency 

The issues above reflect the fact that we should not completely

rust trained models unless we can comprehend the ways they are

aking decisions and predictions. This has attracted the interest of

esearchers, domain experts and users to more explainable models

nd strategies to explain black-box models, a category which in-

ludes most deep learning techniques. 

The variety of algorithms to fit machine learning models to data

resents a tradeoff between performance and explainability: usu-

lly, a simpler, more explainable model is less performant than an

paque model. As a consequence most simple models, such as de-

ision trees, rule-based learners and k-nearest neighbors, are con-

idered transparent, since they provide an interpretable behavior

ut of the box. 

When a model is not transparent enough, there are two main

ays to approach explainability: one can use different post-hoc ex-

lainability approaches, or modify the model to facilitate our un-

erstanding of its decision process. Some new models derived from

eep feature learners are designed to improve transparency and be

ore self-explanatory. 

One way deep learning models can increase transparency is by

ighlighting which input features are causing their predictions. For

xample, attention-based models [101] have an embedded scoring

echnique which highlights the zones in the input that are being

aken into account to make predictions. This works for image clas-

ification and object detection [102] as well as for document pro-

essing [103] . 

A different proposal for transparent image classification is a

onvolutional neural network-based classifier which identifies pro-

otypes in similar images [104] , that is, it provides examples on

mages of the same class that justify the prediction. 

.1.2. Explainability techniques 

When an opaque model is used, there are still ways to im-

rove our understanding of its inner workings or its predictions.

n many cases, a post-hoc explainability technique may be applied.

he different methods that can render a model more interpretable

re usually categorized into two groups. They can be either model-

gnostic, if they work independently of the model used, or model-

pecific, otherwise. 

Some examples of model-agnostic approaches and tools are the

ollowing: 

• Local approximations. LIME [105] this is a method which lin-

early performs a local approximation of a classifier or regressor,

in a way which is interpretable. An AE-based variant of LIME

has been developed to improve its stability [106] . 

• FairML [107] . The FairML toolbox can find strong dependencies

between model outputs and the input features. 

• Sensitivity analysis [108] . It is a computation based on the

derivative of the conditional probability of not predicting a class

given the input features. This defines a vector field where each
vector indicates the direction an instance needs to be moved to,

so as to be classified differently. 

• Auditing. Trained models can be repeatedly tested against dif-

ferent inputs in order to analyze how the outputs are affected.

These inputs, however, need to be provided according to some

criteria. As a way to compute direct and indirect influence of

each feature in the output of a model, there is a procedure

which obscures the effect of a variable in the data [109] . It

works without retraining the model, and can assess the degree

in which a feature is relevant to a classifier. There are several

other approaches to analyzing direct influence of a feature in

the output of a model [110,111] . 

• Counterfactuals [112–114] . This is an approach with a similar

objective to auditing but from a different perspective. Find-

ing a counterfactual consists in detecting the smallest possible

change in feature values that causes an alteration to the predic-

tion of the model. These serve as an explanation for the “closest

possible world” where the prediction would have been differ-

ent, without providing further insight into the decision process.

There are several specific techniques for explaining the outputs

f deep learning models: 

• Layer-wise relevance propagation [115] . This is a methodol-

ogy for visualization of pixel-wise contributions to predictions,

where classifiers are decomposed into several layers of compu-

tation, so the relevance of each pixel is found by propagating

relevance backwards through the network. 

• Saliency map generation [116] . Saliency maps are heatmaps

where the most relevant features from the input are high-

lighted. These are usually applied to convolutional neural net-

works in order to obtain the image regions that cause the out-

put for each instance. 

• DeepLIFT [117] . This is a technique for computing relevance for

each input feature to a neural network, by assigning contibution

scores to each neuron according to its activation given a specific

input. 

• SHAP [118] . This tool provides several model-specific techniques

which find local explanations for different models based on

Shapley values from game theory. In particular, it includes

DeepExplainer and GradientExplainer, which apply to deep

learning models. 

• Traceability [119] . This is a more theoretical concept from the

field of software development that could be applied to deep

neural models. It seeks to describe how each component of a

final inference model is related back to its training model, the

dataset, hyperparameters and all the way up to some high level

requirements on what task the model should carry out. Being

able to trace every item in the development of a deep neural

networks to a higher level cause could serve to ensure that all

choices such as hyperparameters and architecture are well jus-

tified. 

.2. Current challenges and influence in future work 

As discussed in the previous section, most of the well-known

xplainability techniques involve analysis of features in one way

r another. The contribution that AEs can provide in this field is,

herefore, substantial. This is due to the fact that AEs can transform

 set of highly dependent, correlated features in a different set of

ndependent, interpretable ones, by using adequate regularizations.

n this section, we comment on different ways to learn features

hat are meaningful and fair , and on recent developments for also

mproving the explainability of the feature extraction process itself.
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5.2.1. Improving features: disentanglement and fairness 

One way extracted features can improve their quality is by

holding an understandable meaning by themselves, e.g. a model

could train with face pictures and extract a feature for hair color,

another one for nose size, etc. These new features would be much

more useful than the original ones which represent individual pix-

els. This task is usually known as feature disentanglement . 

Some recent AE models whose objective is to disentangle fea-

tures are Total Correlation VAE [120] , Wasserstein AE [121] and In-

foGAN [122] . All of these are generative models, so, as a result,

extracted features not only provide interpretable meaning to in-

stances, but can also be sampled in order to generate unseen ex-

amples in a way that resembles the manipulation of existing in-

stances: for example, a model could generate a realistic face simi-

lar to an existing image but changing blonde hair to black. 

Another step forward in improving learned representations is

forcing these to become fair [123] , which means that the extracted

features obfuscate information about membership to potentially

discriminated groups, e.g. gender or ethnicity. Fairness usually ap-

plies only in contexts where model predictions affect human lives,

e.g. job applications, legal proceedings, etc. A statistic can be de-

fined to measure the discrimination of a classifier with respect to

a binary variable. The objective is then to optimize a tradeoff be-

tween classification accuracy and discrimination [124] . 

There already exist AE-based models for learning fair repre-

sentations. In [125] , an adversarial AE-based classifier is proposed

where the adversary attempts to predict the sensitive (potentially

discriminatory) attributes from the encoding, but its prediction

ability is minimized by the AE and classifier. The objective func-

tion can be adjusted according to the desired type of fairness. An-

other model in [126] consists in a variational AE which disentan-

gles sensitive information from the non-sensitive latent features

and is flexible in the sense that potentially sensitive information

can be retained or removed from the encoding during inference. 

5.2.2. Explainable feature learning 

The described approaches provide the possibility of explaining

the end predictions of other models, as well as rendering them

fairer. However, as has been extensely discussed in this work, the

extracted features can be the actual core of a solution to many

problems. As a consequence, it would be necessary as well to de-

velop strategies which facilitate the explainability of the transfor-

mations an AE can perform in order to learn features. This is an

area only explored very recently, but there are already some de-

velopments. 

Variational AEs can be used to detect anomalies, similarly to

the denoising AE explained in Section 4.4 . In addition, they enable

another, more explainable way of detecting anomalies: computing

the gradients of the reconstruction error with respect to the inputs

[127] . This allows to notice which input features are contributing to

the error, and to cluster anomalies according to this same criterion.

A different approach to improving the explainability of the em-

bedding consists in restricting the operations each neuron per-

forms to just logical AND/OR operators [128] , which limits the ori-

gin of each extracted feature to a relatively simple logical combi-

nation of the input features, thus facilitating its interpretability. 

5.2.3. Influence in future works 

There is currently much to be researched in the area of explain-

able AEs as well as AEs which help explain other models by ex-

tracting better features. The current trends focus especially on gen-

erative models such as variational AEs for these purposes, and will

probably continue to do so, even if some diversification is achieved

as new works appear. 

The adaptability of AEs to many different problems, illustrated

in previous sections, together with the possibility of producing in-
erpretable and fair features, may lead to an increase in usage of

hese models throughout all kinds of machine learning applica-

ions. 

In our future work, we intend to approach explainable feature

earning in the context of AEs, that is, find AE-based models that

xtract features and at the same time provide an understandable

eaning to the mapping from the original features to the en-

oded ones. Ideally, an explainable feature learner should not be

estricted to one end application, but could be used for many pur-

oses, as common AEs already can. 

. Conclusions 

Throughout this text, we have summarized the traditional al-

ernatives for learning representations, the origins and essential

haracteristics of AEs, including how to introduce certain behaviors

nto the coding layer. 

Later, we have thoroughly examined several case studies of AE

pplications in unstructured data as well as images and sequences:

ata visualization, image denoising, semantic hashing, anomaly

etection and instance generation. Other applications have also

een briefly discussed: image superresolution, image compression,

ransfer learning, human pose recovery and recommender systems.

An introduction to the state of the art in explainable AI and

ts application to the field of AEs has been provided as well. AEs

ave notoriously contributed to the areas of feature disentangle-

ent and fair representations, and there have been some recent

evelopments on explainable feature learning as well. 

We can conclude that AEs are a versatile framework for solv-

ng a wide variety of problems where a central task is to learn

epresentations of the data. They can adapt to a given problem in

tructure as well as in the objective they optimize. This way, if the

olution to a problem can be modeled with a transformation of

he feature space onto another space, there will be many instances

here the parameters of the transformation can be learned by an

E. 
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