
EvoAAA: An evolutionary methodology for automated neural autoencoder

architecture search

Francisco Charte∗ Antonio J. Rivera Francisco Mart́ınez Maŕıa J. del Jesus

January 18, 2023

Abstract

Machine learning models work better when curated features are provided to them. Feature engineering methods have
been usually used as a preprocessing step to obtain or build a proper feature set. In late years, autoencoders (a specific type
of symmetrical neural network) have been widely used to perform representation learning, proving their competitiveness
against classical feature engineering algorithms. The main obstacle in the use of autoencoders is finding a good architecture,
a process that most experts confront manually. An automated autoencoder architecture search procedure, based on
evolutionary methods, is proposed in this paper. The methodology is tested against nine heterogeneous data sets. The
obtained results show the ability of this approach to find better architectures, able to concentrate most of the useful
information in a minimized coding, in a reduced time.

1 Introduction

Intelligent appliances based on machine learning systems [1] can be found in many everyday tasks. They are in charge of
filtering spam email [2], detecting fraudulent transactions [3], recommending new products to buyers [4] and many other
apparently simple jobs. To do that, ML methods need to extract knowledge from raw data. The usefulness of that knowledge
mostly depends on the quality of data features. The goal is to produce descriptive and/or predictive models, depending on
the task at hand.

Choosing a curated set of attributes, or building a new one from the original features, tends to produce better results [5]
than using raw variables. Hence the interest in feature engineering techniques in late years, including well-known preprocessing
procedures [6] such as feature selection [7, 8] and feature extraction [9]. Representation learning (REPL) [10, 11] is a term
tightly linked to perform feature engineering relying on deep learning techniques [12, 13].

Autoencoders [14, 15, 16] are a modern general-purpose DL-based family of tools for facing REPL. An AE is an unsu-
pervised symmetric neural network [17] aimed to build a coding that maximizes the reconstruction of data patterns. The
obtained coding can be applied to many different tasks [18], including visualization, anomaly detection, hashing and noise
removing. However, finding the proper AE architecture for each data set and function is not a trivial process. Usually, it is
a challenge that experts have to deal with.

In this study EvoAAA, an automated methodology for designing AE architectures maximizing their reconstruction power
when used with a specific data set, is proposed. The job is confronted as a hard optimization problem [19], unfeasible to
solve by means of exhaustive search. Our hypothesis is that evolutionary methods [20] would be able to find near-optimal
AE architectures in a reasonable time.

To verify the competitiveness of EvoAAA a thorough experimentation, including nine data sets and five search methods,
three of them based on evolutionary optimization, is conducted. The architectures found through this approach are way
better than those retrieved by exhaustive search.

1.1 Problem formulation

That AEs are effective tools for REPL is a known fact [14, 15, 16], having proved their superiority against classical feature
engineering methods such as PCA, LDA, ISOMAP and LLE [21]. They are also a tool closely related to nonstandard
learning [22] problems. An AE is a symmetrical ANN [17], so it shares many of the characteristics of any ANN.

Training an ANN implies adjusting the weights that connect their neurons, using the backpropagation method [23] and
any variation of the gradient descent algorithm such as SGD [24]. The ANN architecture, i.e. number of layers, amount of
units per layer, activation functions, etc., is set in advance, prior to the training process.

An inadequate ANN architecture could produce bad output results, regardless of the weights learned through the training
process. If the ANN is too simple, adjusting too few parameters, it will be not able to learn. On the contrary, too complex

∗Corresponding author: Francisco Charte, Computer Science Department, A3-241 Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén,
Spain.

1

ar
X

iv
:2

30
1.

06
04

7v
1 

 [
cs

.N
E

] 
 1

5 
Ja

n 
20

23



Table 1: Summary of terminology and acronyms

Term/Acronym Description

AE Autoencoder

ANN Artificial Neural Network

Chromosome Codification which represents the set of parameters of an individual in the population

CNN Convolutional Neural Network

Cross-over Operator to produce a new chromosome from two or more individuals (parents) by mixing their genes

DE Differential Evolution

DL Deep Learning

Elitism Technique which preserves the best individuals among generation in an EM

EM Evolutionary Method

ES Evolution Strategy

EvoAAA Evolutionary Methods for Automated Autoencoder Architecture search

Fitness Quality measure linked to each individual

GA Genetic Algorithm

Gene Each value in a chromosome

Generation Each one of the iterations in an evolutionary method

Individual A potential solution in the search space denoted by a chromosome and the corresponding fitness value

LDA Linear Discriminant Analysis

LLE Locally Linear Embedding

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

Mutation Operator to produce a new chromosome altering genes in an existing individual

PCA Principal Component Analysis

Population Group of individuals in a generation

REPL Representation Learning

SGD Stochastic Gradient Descent

ANNs suffer from overfitting [25] due to existing enough parameters to memorize the whole training data. These same
problems also affect AEs. Achieving a balanced architecture, the point where the ANN extracts enough information from
seen data to generalize well while processing future never seen patterns, is still an unsolved problem. As a result, dozens of
papers which contribute the design of ANNs to tackle specific problems [26, 27] are published every year.

The interest is in choosing a proper AE architecture to process an specific data set, so that the AE is able to learn an
optimum representation of the data. Until now the design of AEs has been in charge of human experts. It is not an easy task
to automate, since it is a hard combinatorial problem [19]. In fact, finding a good architecture can be seen as an optimization
problem. This is a field where EMs [20] have shown their efficacy in the past.

Our proposal is a formulation to code any AE architecture so that it can be evolved by means of evolutionary approaches.
The goal is to reduce the reconstruction error as much as possible. This way, the AE encoding will concentrate the maximum
general-purpose information, rather than a coding aimed to improve class separability or any other specific goal. Regarding
evolutionary techniques, they will be used as the tool to optimize a set of parameters. The classical terminology in this field
summarized in Table 1 along with the acronyms appearing in the text, will be used.

1.2 Literature review

Feature engineering is a manual or automated task aimed to obtain a set of features better than the original one. Feature
selection [6] consists in choosing a subset of attributes while maintaining most useful information in the data. It can be
manually performed by an expert in the field, but mostly is faced with automated methods based on feature correlation [7]
and mutual information [8]. By contrast, feature extraction methods transform the original data features to produce a new,
usually reduced, set of attributes. Popular algorithms to do this are PCA [28] and LDA [29], whose mathematical foundations
are relatively easy to understand.

More advanced studies work with the hypothesis that the distribution of variables in the original data lies along a lower-
dimensional space, usually known as manifold. A manifold space works with the parameters that produce the data points in
the original high-dimensional space. Finding this embedded space is the task of manifold learning [30] algorithms. Unlike PCA
or LDA, manifold methods apply non-linear transformations, so they fall into the non-linear dimensionality reduction [31]
category.

Autoencoders, as detailed in [17], are ANNs having a symmetric architecture, as shown in Figure 1. The input and output
layers have as many units as features there are in the data. Inner layers usually have fewer units, so that a more compact
representation of the information hold in the data is produced. The goal is to reconstruct the input patterns into the output
as faithfully as possible.

Although AEs are mainly used to perform feature fusion [17], searching the manifold in which the parameters to rebuild
the data are found, they have many other practical applications [18]. A properly configured AE can project data of any

2



Figure 1: Classic architecture for an AE. Black nodes denote a 2-variable encoding layer. Dark gray nodes are intermediate
hidden layers. Light gray ones are the input (left) and output layers.

Optimization
methods

Component
to optimize

Autoencoder
construction

Hyperparameters WeightsArchitecture

1 2 3

Manual	(expert)
Trial	&	error Grid	search Gradient	

descent

Restrictions

Figure 2: Components to be optimized during AE construction and the methods used for it. The numbers inside circles
indicate the usual optimization order: firstly an architecture is set, then a set of hyperparameters is chosen, lastly the weights
are adjusted.

dimensionality into 2 or 3 dimensions so that patterns can be graphically visualized [32]. AEs can be used to detect
anomalies [33, 34], training them to faithfully reconstruct normal patterns. When anomalous data enters the AE, it produces
a high output error denoting that these patterns do not follow the known distribution. Another interesting application of
AEs, specifically of denoising AEs, is data noise removing. This kind of AE has been used to successfully denoise images [35]
and speech [36]. Usually the loss function of the AE has to be adapted to the specific task to be faced, so that the obtained
encoding promotes separability, topology preservation or any other desired characteristic. When only maximum performance
is pursued while reconstructing the input patterns, the AE will produce a general purpose coding in its inner layer.

AEs can be configured with a variable amount of inner layers, each of them having different lengths. The proper
architecture will mostly depend on the complexity of the patterns to be reconstructed and the restrictions imposed by the
encoding layer. These restrictions prevent the AE from simply copying the input onto the output [17], for instance by
reducing the number of neurons in the coding layer, forcing the output of most neurons to be zero (sparse representation),
etc.

Finding the best parameters to tune a machine learning model is an uphill battle. Performing a grid search through an
internal validation process is an usual approach. However, it is useful only for limited sets of parameters taking known ranges
of values. Disparate search algorithms, metaheuristics [37] and optimization approaches [38], aimed to perform combinatorial

3



optimization, could be applied. These go from relatively simple search methods [39, 40, 41, 42] such as A* or IDA to more
advanced and complex approaches such as memetic algorithms [43], including classic means as simulated annealing [44] or
tabu search [45]. Evolutionary methods [46, 47] have been also used to face optimization problems [48, 49, 50, 51] for long
time. Many of these algorithms are based on the behavior of certain populations, such as ant colonies [52] and particle
swarms [53]. In the following, we focus specifically in approaches based on natural evolution [54].

In evolutionary algorithms [55] the search space is defined by the chromosome. It is made up of several genes, each
of them representing a specific trait or dimension. The values taken by the genes in a chromosome are limited, and each
combination is a potential solution (a point in the search space). These are also known as individuals. Usually a set of
these are randomly generated, producing an initial population. Each individual is assigned a fitness value that represents
the goodness of the solution. From this point, a number of iterations are run consisting in the same steps. Firstly, certain
individuals of the population are selected for reproduction based on their fitness. Then, a set of operators are applied to
selected individuals in order to create new ones. Common operators are crossing, that mixes genes of two individuals to
produce a new chromosome, and mutation, which randomly changes the value of one or more genes. Lastly, the whole
population is evaluated by computing the new fitness values and the population is updated, usually replacing old individuals
with new ones, although the best overall solutions can be kept (elitism) whether they are new or not. Three popular
evolutionary methods are genetic algorithms [56], differential evolution [57] and evolution strategy [58]. The first follows the
methodology just described of selection, crossing, mutation and evaluation. Although GAs can be seen as an old technique,
they are still in widely use [38, 50, 59] due to their simplicity and good performance. The second method produces new
individuals from differences between existing ones, while the third one focuses on evolving only a few individuals using the
mutation operator as only tool.

Evolutionary methods are also suitable for combinatorial optimization, and they have been used for instance for support
vector machines [60] and more recently for deep learning networks [61]. Even though EMs have been already used to
optimize ANNs, many of the proposals have been focused on learning the weights linked to each connection. This is known
as conventional neuroevolution [62, 63, 64, 65] and its main foundation is to use an EM instead of the traditional gradient
descent algorithm to optimize weights. Therefore, a fixed network architecture is the base for all the population. The only
difference among individuals is the set of weight matrices connecting each layer, values optimized by the EM. Neuroevolutive
algorithms able to also evolve the network topology appeared later [66], being aimed most of them to optimize MLPs. There
are different approaches to construct the ANN architecture, being one of the most popular subnetworks composition [67]. A
recent survey in that matter can be found in [68].

More recently, the fusion of different techniques to fully automate the process of choosing a proper model structure and
hyperparameters, adjusting the weights, etc., has given birth to a new field known as AutoML [69, 70, 71]. AutoML tools
can be based on EMs, but also in Bayesian techniques and other optimization algorithms. Existing AutoML tools are mostly
aimed to aid in the design of MLPs and CNNs [72], maybe the two most popular kind of ANNs. Essentially, these tools have
a limited set of cells or blocks that they can combine to define the ANN topology. Depending on the task at glance a specific
strategy is followed to choose these blocks. For instance, the AutoKeras tool [73] defines tasks that allow the automated
design of ANNs for image, text and structured data classification. The ANN architecture is made up of predefined blocks
such as ImageBlock, TextBlock or StructuredDataBlock, with some adjustable parameters. As consequence, these AutoML
tools have a coarse granularity and only can be used to build some specific types of ANNs.

By contrast, in the present proposal EMs are used to evolve the architecture of AEs, a kind of ANN with some specific
aspects such as its symmetric layout or its unsupervised learning approach. The AE layout is generated with a fine granularity,
as described below, instead of using predefined blocks. The weights are learned through the usual back-propagation algorithm.
The EvoAAA procedure proposed here could be a piece in an AutoML chain.

The rest of this paper is structured as follows: in Section 2 the different aspects to optimize while building an AE are
outlined and the proposed architecture search methodology is presented. Section 3 describes the experimental framework,
provides the analysis of performance results and discuss them. Lastly, conclusions are drawn in Section 4.

2 Autoencoder architecture search with EvoAAA

This section presents the proposal to face the problem formulated in subsection 1.1, outlining the aspects that have to be
taken into account while building an AE and detailing the methodology to follow.

2.1 Components to be optimized during AE construction

The process to build a new AE, adjusted to produce a good representation from input patterns, implies several steps. Each
one is linked to the optimization of a certain component. A summary of the procedure, components and methods is shown
in Figure 2. The components are tuned in the following order:

1. Architecture: The structure of the AE has to be set, deciding the amount of layers it will be made of, the number
of units per layer, which activation functions will be used in each unit, etc. For years, this has been manually done by
experts. The conventional trial and error procedure is also a frequent approach, readjusting the AE architecture after

4



n Epochs

Architecture Weights

Exhaustive
grid seach

Try another
structure

EvaluateHyperparameters

Publish and exploit

31 2

45

6

Figure 3: Before an AE can be exploited each architecture has to be tested with multiple hyperparameters combinations,
and the weights of everyone of these configurations have to be adjusted.

the three building steps have been completed and the AE performance evaluated. During this step specific restrictions,
as the symmetrical structure of the network, have to be taken into account.

2. Hyper-parameters: Having decided on the design of the AE, the following step would be choosing the proper values
for several hyperparameters. These are not part of the network structure nor are they part of the weights configuration.
They are in charge of controlling the tuning of weights during the training process. The most common hyperparameters
are the learning rate, the batch size and the number of epochs the network is trained. Although the values could be
manually picked, usually a grid search algorithm is used. Once more, trial and error using part of the training patterns
as validation, allows to find the best configuration.

3. Weights: Once the architecture of the network and its hyperparameters have been set, the last action would be
adjusting the weights that connect every unit in each layer with all the units in the following one. Unlike what
happens for finding a proper network structure and good hyperparameters, there is a solid mathematical background
related to how these weights should be tuned. Derivatives allow to know the contribution of each connection to the
global committed error, so that small adjustments can be made in the correct direction. This is the foundation of the
well-known gradient descent method.

The three previous steps are iterative in a nested way, as shown in Figure 3. Usually several different architectures will
be tested. For each architecture, the first step (noted as 1 inside a circle) would be getting different sets of hyperparameters
to be tried. Adjusting the weights of each configuration, a procedure that is iterative by itself, is be the following step.
The third stage, after an architecture has been fixed, a set of hyperparameters is chosen and the weights are adjusted, is
evaluating the model. The output of this action would lead us to step 4 or step 6, depending on whether a certain criterion is
satisfied or not. In the first case additional sets of hyperparameters, generally obtained by grid search, would be used. If all
potential combinations have been tried, a step backward (noted as 5) would be altering the AE architecture. Step 6 marks
the end of the process, having an AE ready to be exploited in the system.

2.2 The EvoAAA proposal

As previously stated, there are well-known procedures for steps 2 and 3 (see Figure 2) of the optimization process: grid
search for finding the hyperparameters (step 2) and gradient descent for weight adjusting (step 3). On the contrary, finding
a proper AE architecture is still an open problem.

The experience acquired while working with a certain data set could not be applicable when data change occurs. The
amount of combinations is potentially infinite, so automating this process by means of exhaustive search is unfeasible. Most
experts follow some heuristics to choose the number of layers and units, depending on the quantity of variables they have to
deal with, while aspects as activation functions are statically assigned.

Seeking a way of automating the AEs design process, a suitable architecture could be found through a simple search
if the number of combinations is restricted beforehand. It would be similar to the grid search procedure followed for
hyperparameters. This approach would allow to choose the best structure among a bag of predesigned ones. However, it does
not offer any guarantee over the performance of these predesigned models. Other straightforward search heuristics could be
adopted, such as adding/deleting layers/units from a base structure as long as the performance of the AE improves.

The EvoAAA approach proposes to solve the task through EMs, since they have amply demonstrated their ability to solve
disparate optimization problems. Specifically, it aims to use population based algorithms to evolve a set of AE architectures
over time. To do so, a way to code all possible AE configurations is introduced. It will be the chromosome representation
that the EMs will work with.

5



LossType Layers Units per layer Activation function per layer Activation
out layer

1 2 3-6 7-13 14

[1,6] [0,3] [1,f] [1,8] [1,5][1,4]

15

Figure 4: Chromosome genes, name and interval of values they can get.

Table 2: Purpose of each gene and description of their values.

Name Purpose Values

Type Sets the type of AE to be used 1) Basic, 2) Denoising, 3) Contractive, 4) Robust, 5) Sparse, 6) Vari-
ational

Layers Number of additional layers in coder/decoder 0) Only a coding layer, 1-3) Additional layers in both coder and de-
coder

Units Sets the number of units per layer, with f being the
amount of features in the dataset

The first integer (gen 3) configures the number of units in the outer
layer, while the last one (gen 6) sets the coding length.

Activation Activation function to use in each layer, both for the
coder and decoder

1) linear, 2) sigmoid, 3) tanh, 4) relu, 5) selu, 6) elu, 7) softplus, 8)
softsign

Out act. Activation function for the output layer 1) linear, 2) relu, 3) elu, 4) softplus

Loss Loss function to evaluate during fitting 1) Mean squared error, 2) Mean absolute error, 3) Mean absolute per-
centage error, 4) Binary crossentropy, 5) Cosine proximity

2.2.1 Chromosome representation

Evolutionary algorithms usually work with binary or real-valued genes. A set of genes builds a chromosome or individual
of the population. In EvoAAA each chromosome will code the complete architecture of an AE. However, an integer gene
representation is used rather than binary or real-valued genes.

The chromosome will be made up of 15 genes, as shown in Figure 4. The number of each gene is shown above, their names
inside and just below the range of values that can be assigned to them. The purpose of each gene, as well as the meaning of
its values, are portrayed in Table 2. The main characteristics of this AE encoding are the following:

• Different types of representations can be learned with AEs depending on the imposed restrictions. Some of those
restrictions are linked to the type of AE [17], designed to induce sparsity, learn from noisy samples, etc. The first gen
in the chromosome allows to choose among six different AE types (see details in Table 2).

• The AEs will have a coding layer and up to six additional hidden layers that have to be taken in pairs: 2, 4 or 6. The
value of the second gen, between 0 and 3, indicates the number of pairs of hidden layers. Therefore, the simplest AE
would have only 3 layers, the input one, the coding one and output one, while the most complex would be made up of
9 layers in total.

• Genes 3 to 6 state the number of units to have in the hidden layers. The last value is associated to the innermost layer,
so it sets the coding length. The other three values are linked to each layer pair, from outer to inner. The number
of features in the data, noted as f , will limit the amount of units in any layer. An additional restriction is that inner
layers cannot be larger than outer ones.

• With the exception of the input layer, which is limited to transferring values to the next one, all other layers in the
AE use an activation function. Although it is common for all units of an AE to have the same activation function,
there is nothing that restricts the use of different functions. The proposed encoding uses 7 genes (7 to 13) to choose
the activation functions to be applied in each inner layer, allowing eight different options (see Table 2). The output
layer is treated independently with gene 14, since only activation functions producing positive output are allowed.

• The last gene in the chromosome can take values from 1 to 5, stating the loss function to be internally evaluated while
training the AE. The meaning of these values is provided in Table 2.

Through the restrictions imposed in genes 3 to 6, the resulting AEs would be always undercomplete [17]. This means
that the learned representation will be more compact than the original one, with a vector containing less values. In addition,
the loss function evaluated while adjusting the weights will exclusively focus on reconstruction error. AEs can be trained
to improve class separability, reduce the data complexity and other goals. In this case the main objective is to have a
reconstruction of data patterns as good as possible. This will force the inner layer to concentrate as much general purpose
useful information as possible, so that the AE can be later used in any kind of task.

6



2.2.2 Autoencoder complexity penalization

When designing an AE for learning new representations the main interest will be in the raw performance. In an AE
the performance is usually measured as the error produced while reconstructing data patterns from the learned encoding.
Nonetheless, the time needed to obtain the encoding is also a factor to consider. This is the motivation to include a
penalization factor in EvoAAA: α. It will be used in the fitness function of the evolutionary method in order to assess the
goodness of each AE configuration.

The fitness function, that will decide the quality of the solutions, will be computed as shown in (1), where trainloss is
the reconstruction loss produced by the AE with training data, Layers is the number of additional hidden layers (gen 2),
Units coding is the size of the encoding layer (gen 6), and α is a coefficient setting the level of penalization applied according
to the complexity of the AE.

fitness = trainloss+ α(Layers× Units coding) (1)

Therefore, AEs having a similar reconstruction performance but simpler architecture (see subsection 3.5.8 for additional
details) will be preferred over the more complex ones. The bias to obtain AEs with less layers and a shorter encoding is
modulated with the α value. This is the only parameter needed by EvoAAA.

2.2.3 Search space

The reason for using a complex evolutionary algorithm to find a proper AE architecture is that the search space is huge. So,
a strategy is needed to pick a good solution without having to explore much of this space. But, how large is the search space
assuming the chromosome previously described?

Excluding genes 3-6, whose values would vary depending on the number of features in the dataset, there are more than
a billion combinations (see Eq. 2).

Type× Layers×Act7 ×Act out× Loss =

6× 4× 87 × 4× 5 = 1 006 632 960
(2)

Working with very small datasets, those having a few dozens of attributes only, the amount of combinations will grow
to several billions. We would face trillions of solutions or even more for high-dimensional datasets. Evaluating all those
solutions to find the best one is currently unfeasible. As a result, looking for an optimal AE architecture would not be
always possible by brute force. However, we could find good enough solutions through optimization mechanisms based on
evolutionary strategies.

3 Algorithmic framework of EvoAAA

The EvoAAA methodology is a general evolutionary proposal to search good AE architectures. It can be instantiated using
any population based evolutionary algorithm. In this study three specific instances of EvoAAA are tested, one with a genetic
algorithm as underlying search method, another one relying on differential evolution and the third one using evolution
strategy. The three of them will be compared against each other and also versus two baseline search methods, a simple
exhaustive search and a random search. Nine different data sets will be used in the conducted experimentation.

3.1 Evolutionary search algorithms

We propose instantiating EvoAAA three times using three different evolutionary algorithms. All of them will use the former
chromosome representation. These three approaches are:

• Genetic algorithm (GA). A classical genetic algorithm [56], in which a population of individuals evolves through a
crossover operator, to give rise to new ones, and to which a mutation operator is applied with a certain probability.

• Evolution strategy (ES). An aggressive solution-seeking algorithm [58], working with a few individuals who give rise
to new ones exclusively through mutation.

• Differential evolution (DE). A population-based optimization algorithm [57] in which new individuals (agents) are
produced from the differences between two random agents with respect to another taken as reference.

Table 3 summarizes the main parameters used to run these methods. For GA and ES, each gene in the chromosome is
mutated with a probability of 1/15, a value based on the chromosome length itself. Elitism is used in the GA to preserve the
tenth percent of individuals having better fitness. The ES is intrinsically elitist, choosing only the best candidates among
the union of new mutated individuals and the old population. For GA, in each iteration the best 5 individuals are chosen
and preserved. Then, two random parents are picked up from the remaining individuals by using roulette wheel probability.

7



Table 3: Main parameters of the evolutionary algorithms.

Parameter GA ES DE

Population size 50 4 150
Iterations 100 500 30
Prob. mutation 1/15 1/15 NA
Prob. cross-over 1.0 NA 0.5
Elitism (individuals) 5 NA NA
Termination cost 0 0 0

Table 4: Datasets used in the experimental study

Dataset Type Variables Instances Source

cifar10 Integer 1 024 60 000 [75]
delicious Binary 983 16 105 [76]
fashion Integer 784 70 000 [77]
glass Real 9 214 [78]
ionosphere Real 34 351 [79]
mnist Integer 784 70 000 [80]
semeion Binary 256 1 593 [81]
sonar Real 60 208 [82]
spect Binary 22 267 [83]

A multi-point crossover operator is applied, being the crossing points established according to the diagram in Figure 4.
This allows the two individuals acting as parents to interchange several of their genes to produce childhood. This way, new
individuals are produced until the population size is met, replacing all the old individuals. Lastly, the mutation operator is
used with some individuals according to the probability previously stated. As can be seen, this is an aggressive scheme that
maximizes the exploration in such a huge search space. For DE, the DE/local-to-best/1 optimization approach is followed.
The population size is obtained from the representation length (15 genes × 10). Cross-over probability, as well as other
specific parameters, has been set following the recommendations in [57, 74]. The number of iterations for each method has
been adjusted so that a similar amount of evaluations is made.

3.2 Data sets

In order to compare the performance of the three instances of EvoAAA along with the exhaustive and random search
approaches, nine data sets are used. Their main traits are detailed in Table 4. The last column provides the origin reference
for each one of them. The criteria followed to choose them have been:

• Attribute type: An AE is a specialized ANN that, through a series of computations, reconstructs the input values.
These have to be numeric, and three cases are considered: real values, integer values, and binary values. The goal is to
evaluate how the AEs performance changes depending on the type of attributes they have to reconstruct.

• Number of attributes: Half of the data sets have several hundreds of attributes, even more than a thousand in the
case of cifar10. The other five are not that large, with only a handful of variables. This way the behavior of found AEs
while working with a few versus a lot of variables will be analyzed.

Since an AE is an unsupervised representation learning method, class attributes have been removed for all the data sets.
The number of variables indicated in Table 4 is the effective amount of them being processed.

3.3 Restrictions and evaluation

Five AE architectures will be obtained for each data set, EvoAAA-Gen: the instance based on a genetic algorithm, EvoAAA-
Evo: the instance using evolutionary strategy as underlying search method, EvoAAA-Dif: the one based on differential
evolution, and the two produced by the exhaustive (Exh) as well as random search (Ran). The same restrictions and
evaluation procedure are applicable to all of them:

• Performance evaluation: The common mean squared error metric is used to assess the performance of the AEs. This
is an unbounded measure, which depends on the original range of values. The lower the MSE the better performance
the AE has. This value is the trainloss factor in Eq. 1.

8



• Termination cost: As shown in Table 3, the three evolutionary algorithms have been configured with 0 as termination
cost. This means that the search will stop if a configuration returning MSE = 0 is found, but not before unless the
maximum runtime or maximum number of iterations are reached.

• Maximum runtime: The five search approaches will be limited to running for 24 hours. After that the best solution
found until then is returned as preferred AE structure. In practice, this limitation will impede the exhaustive search
from going through all the possible AE configurations, limiting as well the amount of combinations tested by the random
search.

Aside from the MSE, the amount of architectures tested by each approach is also recorded during execution, as well as
each individual solution. The number of combinations is limited by both the maximum runtime and the population size and
iterations of the evolutionary methods.

3.4 Experiments and results

The 45 experiments1 (9 data sets times 5 search approaches) have been executed in the same hardware, a PC with an NVidia
RTX-2080 GPU, and using the following software configuration: Arch Linux [84], CUDA 10.1 [85], cudnn 7.6 [86], Tensorflow
1.14 [87], Keras 2.24 [88] and ruta 1.1 [89]. The RMSProp [90] optimizer of Tensorflow has been used. Since it relies on
an adaptive learning rate, optimizing this hyper-parameter is not necessary. The default batch size value in Keras has been
chosen, 32. Lastly, the training of the AEs is made in 20 epochs. Although a higher number of epochs, such as 100 or even
more, is usual while trying to perform a final optimization of a representation, in this case the main interest is in comparing
the search procedures rather than in obtaining fully optimized AEs. Reducing the number of epochs allows to try more
architectures in a certain time interval. Regarding how the data instances are used, 20% of them are reserved from the
beginning to assess AE performance, computing the MSE. The remainder 80% patterns are given to Keras to train each AE
architecture.

A summary of results is provided in Table 5. For each data set the columns indicate its name, the search method, the
amount of individuals (AE configurations) tested, the number of hidden layers and encoding length of the best individual, its
complexity (assuming that α = 0.0001) and the MSE obtained with test data. For these last two columns the lower the value
the better the AE would be, having less complexity and superior reconstruction performance. The best configuration (lower
MSE) for each data set has been highlighted in bold. These values include the complexity penalization, real best MSEs are
provided in Table 6. Average error values, computed from all the evaluated solutions, and best values are presented in it.

The number of tested individuals is limited by the population size and iterations , as well as the maximum runtime, for
the three EvoAAA instances. In addition all the invalid configurations produced during the exploration are discarded before
they enter the training and testing phase. The exhaustive and random strategies only generate valid AE architectures, and
the only limitation is the running time.

3.5 Discussion

The results shown in Table 5 can be analyzed from several perspectives, raw performance: the lower MSE the better; size
of explored space: although the more inspected individuals could be considered the better, the ability to find good solutions
exploring less space has to be also taken into account, and solution complexity: the fewer layers and shorter encoding length
the better. In addition, other aspects such as running times, convergence, etc., can be studied.

3.5.1 Analysis of performance

It is easy to see that the highest error values always correspond to the exhaustive search approach. MSE is unbounded
and depends on the original attribute values. So, it does not allow to make comparisons among different data, but only
between the five methods for each data set. In general, the error committed by Exh is one or two orders of magnitude above
EvoAAA-Dif, EvoAAA-Gen and EvoAAA-Evo.

Comparing the three EvoAAA instances, EvoAAA-Gen is the best performer in 5 out of 9 datasets, with EvoAAA-Dif in
a close second position gaining 3 out of 9 cases although the differences against EvoAAA-Evo are almost negligible in some
cases. The biggest difference can be found with the fashion dataset, where the EvoAAA-Dif approach achieves one-quarter of
the error shown by EvoAAA-Gen while using a simpler architecture. This analysis is made taking into account the complexity
of AEs, i.e. the MSE is increased by the penalization factor.

In addition to best values, it would also be interesting to analyze the average behavior of the search strategies. For doing
so, Table 6 shows for each data set (columns) and method (rows) the average and minimum (best) MSE2 achieved in each

1The R code to reproduce these experiments, as well as the datasets used in them, are available to download from https://github.com/fcharte/

EvoAAA. To execute this code you will need a current R version, install several R packages (detailed in the provided scripts) and the frameworks
enumerated in this section. Each run will provide two result files containing all evaluated solutions and the AE structure for the best ones.

2These are raw MSE values rather than MSE penalized by complexity (the penalization factor was explained in subsection 2.2.2 and it depends
on the α parameter, set to 0.0001 in the described experiments). Therefore, best values in Table 6 are lower than those in Table 5.

9

https://github.com/fcharte/EvoAAA
https://github.com/fcharte/EvoAAA


Table 5: Summary of results. For each combination dataset-optimization strategy the amount of evaluated individuals,
number of layers and encoding length of the AE, its complexity and MSE (including the penalization factor) are provided.

Dataset Method Individuals Layers Coding length Complexity Error (MSE) ↓

cifar10 EvoAAA-Dif 2 537 1 38 0.004 0.0137

EvoAAA-Evo 4 001 1 52 0.005 0.0133

Exh 1 739 1 1 0.000 0.0395

EvoAAA-Gen 1 115 1 39 0.004 0.0131

Ran 2 101 3 5 0.002 0.0260

delicious EvoAAA-Dif 4 650 2 19 0.004 0.0124

EvoAAA-Evo 4 001 1 39 0.004 0.0119

Exh 5 837 1 1 0.000 0.0165

EvoAAA-Gen 1 401 1 32 0.003 0.0102

Ran 5 901 2 10 0.002 0.0134

fashion EvoAAA-Dif 2 604 1 256 0.026 444.8169

EvoAAA-Evo 755 3 61 0.012 565.4571

Exh 1 494 1 1 0.000 4 180.2370

EvoAAA-Gen 439 5 156 0.047 1 881.0680

Ran 1 501 2 35 0.007 782.3572

glass EvoAAA-Dif 4 650 2 3 0.001 24.8785

EvoAAA-Evo 4 001 3 3 0.001 5.4093

Exh 35 368 1 1 0.000 29.2589

EvoAAA-Gen 4 505 1 5 0.000 0.4473

Ran 35 301 3 7 0.002 1.2705

ionosphere EvoAAA-Dif 4 650 2 23 0.005 0.0740

EvoAAA-Evo 4 001 3 15 0.003 0.0931

Exh 29 905 1 1 0.000 0.2099

EvoAAA-Gen 2 302 3 15 0.003 0.0917

Ran 29 901 3 23 0.007 0.1049

mnist EvoAAA-Dif 2 754 1 162 0.016 192.5133

EvoAAA-Evo 732 3 332 0.066 431.6960

Exh 1 491 1 1 0.000 4 104.1400

EvoAAA-Gen 403 1 156 0.016 254.7397

Ran 1 401 2 35 0.007 611.5036

semeion EvoAAA-Dif 4 650 1 136 0.014 0.0459

EvoAAA-Evo 4 001 1 134 0.013 0.0355

Exh 19 861 1 1 0.000 0.1940

EvoAAA-Gen 4 505 1 110 0.011 0.0376

Ran 19 901 2 132 0.026 0.0604

sonar EvoAAA-Dif 4 650 1 29 0.003 0.0142

EvoAAA-Evo 4 001 3 17 0.003 0.0162

Exh 34 557 1 1 0.000 0.0462

EvoAAA-Gen 4 505 3 7 0.001 0.0139

Ran 35301 4 8 0.003 0.0145

spect EvoAAA-Dif 4 650 2 13 0.003 0.0959

EvoAAA-Evo 4 001 3 14 0.003 0.0834

Exh 30 740 1 1 0.000 0.1829

EvoAAA-Gen 4 505 5 15 0.004 0.0703

Ran 30 701 3 14 0.004 0.1145

10



Table 6: Average and best performance (raw MSE) by data set and search strategy

cifar10 delicious fashion glass ionosphere mnist semeion sonar spect

EvoAAA-Dif (Avg.) 0.0256 0.0186 8979.9337 604.3130 0.2719 5073.9444 0.2348 0.0404 0.2575
EvoAAA-Evo (Avg.) 0.0085 0.0086 891.1958 562.3818 0.1152 616.6640 0.0322 0.0223 0.1145
Exh (Avg.) 0.0498 0.0195 18734.2379 611.4017 0.3687 9646.3325 0.2836 0.1331 0.3213
EvoAAA-Gen (Avg.) 0.0097 0.0075 2852.7007 345.4758 0.1227 3323.4105 0.0405 0.0157 0.1006
Rnd (Avg.) 0.0461 0.0206 8557.0936 606.7591 0.3303 4997.0538 0.2886 0.0761 0.2910

EvoAAA-Dif (Best) 0.0020 0.0131 444.7913 563.1547 0.0694 192.4971 0.0323 0.0106 0.0924
EvoAAA-Evo (Best) 0.0080 0.0080 565.4449 316.0380 0.0963 431.6296 0.0221 0.0128 0.0806
Exh (Best) 0.0394 0.0164 4180.2370 576.7005 0.2098 4104.1400 0.1939 0.0461 0.1828
EvoAAA-Gen (Best) 0.0090 0.0055 1881.0210 0.4468 0.0872 254.7241 0.0266 0.0115 0.0658
Rnd (Best) 0.0047 0.0021 782.3502 564.4037 0.0980 564.2114 0.0339 0.0114 0.1098

Table 7: Performance ranking of the tested methods

Dataset EvoAAA-Dif EvoAAA-Evo Exh EvoAAA-Gen Ran

cifar10 1 3 5 4 2
delicious 4 3 5 2 1
fashion 1 2 5 4 3
glass 3 2 5 1 4
ionosphere 1 3 5 2 4
mnist 1 3 5 2 4
semeion 3 1 5 2 4
sonar 1 4 5 3 2
spect 3 2 5 1 4

Average 2.00 2.56 5.00 2.33 3.11

case. It can be observed that the best MSE obtained by the exhaustive and random search is far from the average MSE of
EvoAAA-Dif, EvoAAA-Gen and EvoAAA-Evo. This leads to the conclusion that even a few iterations with EvoAAA would
achieve a better result than 24h of exhaustive or random search. Internal differences between best and average values for
each search method tend to be minimal in most cases (cifar10, delicious, ionosphere, semeion and sonar). In general, these
differences seem lower in the case of EvoAAA-Evo than with EvoAAA-Gen or EvoAAA-Dif. For instance, average and best
values for fashion, glass and mnist are closer in the former case than in the latter. This suggests that EvoAAA-Evo would
be preferable if only a few iterations are affordable.

If we strictly focus on the best values achieved by each approach, these returned at the end of all iterations without
complexity penalization, EvoAAA-Dif stands out over the other algorithms. It has 5 best values, against 2 for EvoAAA-Gen,
1 for EvoAAA-Evo, and 1 for the random search. To assess the overall performance of each method a ranking is provided
in Table 7, with the last row showing the average rank. As can be seen, EvoAAA-Dif is the best performer, closely followed
by EvoAAA-Gen and EvoAAA-Evo. The rank difference between random search and exhaustive search is considerable. The
bias in the exhaustive search, which tries consecutive configurations until the runtime is out, implies less opportunities to
explore the solution space than the random search. By applying a Friedman statistical test over the best MSE values (bottom
half of Table 6) a p-value = 0.0004248178 was obtained. This means that there are statistically significant differences among
the evaluated optimization strategies.

3.5.2 Analysis of explored space

As can be seen in Table 5, in general the exhaustive and random search approaches explore a much larger space of solutions
than the evolutionary methods. In some cases, such as glass, ionosphere, semeion, sonar and spect, this approach examines
up to 15 times more configurations than EvoAAA. This is due to that these search algorithms devote all their time in
analyzing candidate solutions while the evolutionary methods have other tasks to do, such as individuals selection, crossing,
mutation, etc. However, neither random nor exhaustive search never achieve the best performance when AE complexity is
taken into account. On the contrary, the MSE for these methods is always higher. Exhaustive search gets stuck in simpler
architectures, as stated by its complexity values, despite its usually longer run times (analyzed later) that always go to 24
hours. This behavior is due to the way the exhaustive search has been implemented, trying all possible solutions allowed by
the representation in Figure 4 from right to left as is usually done when an interval of values is going to be traversed from
beginning to end. Random search has the ability to explore all the solution space, but it is a non-guided approach. In a way
the strategies followed by the exhaustive and random search are antagonistic. The former chooses to exploit the local space,
trying all the possible solutions of a very reduced area. The second one jumps all over the space of solutions, without taking
advantage of past configurations to exploit the locality of the most promising solutions.

11



The amount of solutions explored by the EvoAAA-Dif, EvoAAA-Gen and EvoAAA-Evo methods is quite similar while
working with small datasets, such as glass, semeion, sonar or spect. By contrast, the EvoAAA-Evo and EvoAAA-Dif
approaches are able to inspect more candidate structures when larger datasets are used. This could be due to the simpler
procedure of EvoAAA-Evo to produce its offspring with respect to EvoAAA-Gen, since crossing is not necessary and the
population size is smaller, and to the lower number of iterations conducted by EvoAAA-Dif with respect to EvoAAA-Gen.

3.5.3 Analysis of solution complexity

Another fact to take into account while comparing the different search procedures is the complexity of found architectures.
Theoretically, simpler architectures achieving a similar performance would be preferable to more complex ones.

As can be stated by looking at the sixth column in Table 5, the lowest complexity is always that of the Exh approach.
As said before, the exhaustive search is stuck in small architectures with thousands of combinations for activation functions
and loss functions (see Figure 4). However, these are not the best solutions as the MSE values demonstrate.

As would be expected, the random search also produces disparate AE configurations. Sometimes are simpler than those
produced by the EvoAAA methods and sometimes are more complex.

Despite some exception, such as fashion and spect, EvoAAA-Gen usually produces simpler AEs with fewer layers and
a more compact encoding than EvoAAA-Dif and EvoAAA-Evo. Therefore, at first sight the EvoAAA-Gen search seems to
be the best choice, as it provides simpler AEs with better reconstruction capability. However, this comes with a cost as
explained below.

3.5.4 Analysis of running times

The running times recorded during the experiments for each configuration are provided in Table 8. As in Table 5, for each
data set there are five rows corresponding to the five search approaches. Analyzing this information the following conclusions
can be drawn:

Table 8: Running time summary

Running times ↓
Dataset EvoAAA-Dif EvoAAA-Evo Exh EvoAAA-Gen Rnd

cifar10 24h 24h 24h 24h 24h
delicious 18h 4m. 17h 54m. 24h 6h 51m. 24h
fashion 24h 24h 24h 24h 24h
glass 1h 41m. 1h 20m. 24h 2h 20m. 24h
ionosphere 1h 33m. 0h 44m. 24h 1h 59m. 24h
mnist 24h 24h 24h 24h 24h
semeion 2h 28m. 1h 32m. 24h 5h 0m. 24h
sonar 1h 24m. 1h 10m. 24h 4h 13m. 24h
spect 1h 31m. 0h 59m. 24h 5h 57m. 24h

• The exhaustive and random strategies always reach the limit of 24 hours without being able to examine enough
configurations to find a good solution, although the random approach is close to the evolutionary methods in some
cases.

• For the larger data sets (cifar10, fashion and mnist) none of the five approaches finish the search process, running out
of time.

• In general, EvoAAA-Dif and EvoAAA-Evo only need a fraction of the time used by EvoAAA-Gen to find AE architec-
tures slightly more complex but with a similar performance.

From this analysis a simple guideline can be drawn, choose the EvoAAA-Dif EvoAAA instance if performance is the main
and only goal, but consider the EvoAAA-Evo instance if running time is important while sacrificing a bit of reconstruction
power. For large data sets the latter approach can save many hours in obtaining a good-enough AE architecture.

3.5.5 Solutions explored over time

The following aspect to be analyzed is how each approach explores the solution space. For doing so, the plots in Figure 5 to
Figure 12 show the MSE (Y axis) of the solutions examined through time (X axis)3. Since not all methods take the same
running time, there are differences among the X axis for a given data set.

3The analysis described here has been made with the overall results, although only some illustrative cases are graphically shown. Plots
corresponding to all combinations of dataset × search method are available in the repository.

12



0.000

0.025

0.050

0.075

0.100

0 500 1000 1500

Time (minutes)

E
rr

or

Exhaustive (cifar10)

Figure 5: Solutions explored through time

As can be seen, the exhaustive search (Figure 5) keeps a high error rate from start to end. For fashion and mnist, whose
attributes are quite similar, good and bad solutions are mixed over time (see Figure 6). For the remainder data sets the
search does not seem able to improve much as new solutions are evaluated.

0

20000

40000

60000

0 500 1000 1500

Time (minutes)

E
rr

or

Exhaustive (mnist)

Figure 6: Solutions explored through time

As can be observed in Figure 7, the random search approach has a similar behavior to the exhaustive search, although
it has larger fitness variability (the lines are less condensed) among the explored individuals. It is due to its ability to jump
over all the solution space, instead of going through every possible combination of parameters.

The behavior of the EvoAAA-Gen and EvoAAA-Evo candidates is similar, as shown in Figure 8 and Figure 9. Both
start with lower error rates than the exhaustive and random strategies, and then improve as the running time goes by. This
advance in the quality of solutions is not highlighted in the plots, as the Y axis is kept fixed to ease the comparison among
the five approaches.

The behavior shown by the EvoAAA-Evo and EvoAAA-Gen methods while working with the glass data set is anomalous
as can be observed in Figure 10 and Figure 11. As stated in Table 4, this is a data set with only 9 attributes and a handful
of instances. It is probably the hardest case for an AE, since there is no much room to reduce the data representation nor
enough patterns to learn it.

By contrast with EvoAAA-Gen and EvoAAA-Evo, the EvoAAA-Dif algorithm seems to have a wider exploration range
in most cases, probably due to its larger population. Figure 12 shows the quality of individuals evaluated through time by
this search approach.

13



0.2

0.4

0.6

0 500 1000 1500

Time (minutes)

E
rr

or

Random (ionosphere)

Figure 7: Solutions explored through time

0.2

0.4

0.6

0 25 50 75 100

Time (minutes)

E
rr

or

EvoAAA-Gen (ionosphere)

Figure 8: Solutions explored through time

0.2

0.4

0.6

0 10 20 30 40

Time (minutes)

E
rr

or

EvoAAA-Evo (ionosphere)

Figure 9: Solutions explored through time

14



0

400

800

1200

0 50 100

Time (minutes)

E
rr

or

EvoAAA-Gen (glass)

Figure 10: Solutions explored through time

0

400

800

1200

0 20 40 60 80

Time (minutes)

E
rr

or

EvoAAA-Evo (glass)

Figure 11: Solutions explored through time

0.000

0.025

0.050

0.075

0.100

0 500 1000 1500

Time (minutes)

E
rr

or

EvoAAA-Dif (cifar10)

Figure 12: Solutions explored through time

3.5.6 Achieved improvement vs explored solutions

In Figures 13 to 15 the X axis has been changed from time to number of explored solutions, while the Y axis shows the error
of the best solution found until now. The Y axis scale is kept fixed for each dataset, but the X axis scale changes since each

15



approach examines a different amount of candidates. The goal is to analyze the improvement achieved by each optimization
strategy as the they explore more solution space. All plots are available in the repository.

As might be expected, all five methods find better solutions as the number of possible architectures examined grows.
However, both the exhaustive method and random search show some rungs as the search progresses, getting sometimes stuck
for a long time in the same error level. An example of this behavior can be seen in Figure 13.

● ●

● ●

● ●

● ●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ●
● ● ● ●

● ●

● ● ● ● ● ● ● ●

● ●
● ●

● ● ● ● ● ●
● ●

● ● ● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ● ● ●

● ●
● ● ● ● ● ●

● ●
● ●

0.000

0.025

0.050

0.075

0.100

0 30 60 90

Number of combinations

E
rr

or

Random (cifar10)

Figure 13: Improvement achieved as solutions are explored

The improvements achieved by EvoAAA-Gen and EvoAAA-Evo seem more progressive until they reach their minimum
level (see Figure 14). In addition, this lower error rate is achieved after exploring a lower number of potential solutions.

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●0

20000

40000

60000

0 50 100 150 200 250

Number of combinations

E
rr

or

EvoAAA-Gen (mnist)

Figure 14: Improvement achieved as solutions are explored

The behavior of the EvoAAA-Dif algorithm is somehow a mix of the previous ones, with a continuous improvement of
results and starting with a lower error but having certain similarities with the random strategy.

3.5.7 Search convergence

The following step is to analyze the methods’ speed of convergence. In this case there are nine plots available in the repository,
one per data set. One of them, shown in Figure 16, is taken as reference for the following analysis. This way the same X and
Y scales are shared by the five optimization strategies. The X axis corresponds to running time. Only a portion of the time
spent is represented, otherwise the lines that depict the EvoAAA instances would occupy only a small portion of the area,
to the left. The lines that continue to the right mean that better values were found later, whereas those that do not reach
the X limit indicate the best value achieved is in the plot (i.e. random search with the mnist dataset). From these plots the
following conclusions can be extracted:

16



●
●●

●●●

●
●●●●●

●
●

●●

●●
●●

●●
●●

●
●●●●●

●●●●●●●●
●
●

●
●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

0.0

0.2

0.4

0.6

0 250 500 750 1000

Number of combinations

E
rr

or

EvoAAA-Dif (semeion)

Figure 15: Improvement achieved as solutions are explored

0 2 4 6 8 10 12

10
00

20
00

30
00

40
00

mnist

Elapsed time (hours)

E
rr

or

Exhaustive
EvoAAA-Gen
EvoAAA-Evo
Random
EvoAAA-Dif

Figure 16: Speed of convergence for each EvoAAA approach against exhaustive and random search

• In general, the exhaustive approach (thick solid line) is stuck in a high error rate most of the time. The only exception
is the glass data set, with this search method almost chasing the three EvoAAA strategies.

• The random search (thin solid line) behaves aimlessly as it would be expected. Sometimes it shows a slow progress over
time similar to that of the exhaustive strategy (e.g. cifar10 and delicious) while other times it finds a good solution
very quickly and then no better solutions are found (e.g. fashion and mnist). It is a strategy that could provide a good
result in short time but without guarantees.

• In general, the three EvoAAA instances converge quickly to a lower error value than the two baseline strategies, then
stabilize and keep improving at a slower rate.

• In most occasions the ES approach (dotted line) reaches its optimum (lowest error value) before the GA (thick dashed
line) does, then finishes the execution. On the contrary, the GA method keeps improving for longer. Due to this
behavior, it is able to beat ES in many cases.

• The DE strategy (thin dashed line) usually starts with worse solutions than GA and ES, but in most cases it converges

17



faster, particularly with the most complex datasets such as cifar10, fashion and mnist. It is able to get the best result
in a fraction of the time with respect to the other alternatives in some cases.

On the basis of this analysis, it would be possible to adjust the parameters of the DE and ES algorithms, increasing the
population or their number of iterations, in order to run longer and keep improving as the GA does. They would presumably
achieve results comparable to those of the GA method for some small datasets (e.g. sonar, glass and spect), or even better
with DE.

3.5.8 Influence of the penalization factor

To finish this analysis, how the penalization factor linked to the AEs complexity influence the obtained results is scrutinized.
For doing so, the DE strategy has been used over the sonar dataset with α varying from 1 to 0 following a logarithmic scale.

The goal of the α penalization factor is to prefer simpler AE architectures for similar reconstruction performances.
Intuitively, lower α values would produce AEs with a higher reconstruction power but also with more layers and units, and
the opposite for higher α values (i.e. simpler architectures having lower reconstruction accuracy).

0.00

0.05

0.10

0.15

0 2000 4000 6000

Time

Lo
ss

Alpha
A.0.0000
A.0.0001
A.0.0010
A.0.0100
A.0.1000
A.1.0000

Figure 17: Loss change through time for different α values using EvoAAA-Dif with the sonar dataset

To start with this analysis, Figure 17 shows how the MSE changes through time, as the architectures are explored by the
DE algorithm, for the considered α values. As can be observed, the two highest penalization values severely affect the search
procedure as the abrupt loss changes reflect. As the DE method tries to improve the performance testing more complex DEs
the penalization grows. These rungs are reduced as the α value lowers, until there is no impact with α = 0. So, the first
outcome would be that it is preferable to have small penalization factors, specifically values that are a fraction of the MSE.

In order to better appreciate the extent to which performance degrades as α increases, the final results obtained with DE
from the sonar dataset for each penalization have been represented in Figure 18. Black bars are linked to the left Y axis scale
and denote MSE (higher bars are worse), while the line indicates complexity level (right Y axis). Observe that for α = 0 and
α = 0.0001 there is almost no change in performance, but the difference in complexity is remarkable. As penalization factor
increases, to the left, the complexity scores reduces but the reconstruction error does the opposite.

Table 9: Loss and AE configuration obtained with each α value using EvoAAA-Dif with the sonar dataset

α Loss Layers and units

0.0000 0.00993972 57, 47, 36, 22, 36, 47, 57
0.0001 0.01062195 37, 32, 8, 32, 37
0.0010 0.01951711 23, 2, 23
0.0100 0.02262429 38, 3, 38
0.1000 0.08206710 1
1.0000 0.10308630 1

The exact MSE values and configuration for each considered α are summarized in Table 9. As indicated above, the
performance difference between α = 0 and α = 0.0001 is almost negligible, but the former uses 7 layers instead of 5 for the
latter, and the encoding length is 22 units against only 8. Clearly, in this specific case a small penalization factor returns
better AE architectures than higher ones or having no penalization at all.

18



0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
ec

on
st

ru
ct

io
n 

lo
ss

● ●
● ●

●

●

C
om

pl
ex

ity
 s

co
re

0

20

40

60

80

100

120

1.0000 0.1000 0.0100 0.0010 0.0001 0.0000

Alpha value

Figure 18: Loss vs AE complexity for different α values using EvoAAA-Dif with the sonar dataset

As a result of this analysis, α was set to 0.0001 for the experiments conducted in this study, as was specified at the
beginning of Section 3.

4 Concluding remarks

AEs are a useful tool to face representation learning. However, finding the AE architecture that fits better every case is a
difficult task. Internal cross-validation is an usual approach for tuning hyperparameters. However, the solution space is huge
if we want to also adjust the AE architecture. Therefore, more powerful methods to face this problem would be needed.

In this paper we have proposed EvoAAA, an evolutionary based approach to find the best AE architecture for each data
set. First, a way of encoding the AE architecture within a chromosome has been proposed. It is broad enough to consider
most AE variations, including different amounts of layers and units, individual activation functions per layer and several
loss functions. Then, three search methods have been planned, one based on differential evolution, another one founded on
a genetic algorithm and the other on an evolutionary strategy. Lastly, a thorough experimentation and analysis have been
conducted, comparing the results of the three EvoAAA strategies against two different baselines, exhaustive and random
search.

Overall, it has been demonstrated that the proposed methodology is able to find a good AE structure for each data set.
It may not be the optimal one, as more advanced search algorithms and optimization strategies could improve these results,
but it is better than the ones randomly chosen or found through an exhaustive look up if results in a reasonable time are
needed. The conducted experiments demonstrate that EvoAAA is a competitive procedure to accomplish the job.

This work was partially supported by the project TIN2015-68854-R (FEDER Founds) of the Spanish Ministry
of Economy and Competitiveness.

References

[1] C.M. Bishop, Pattern recognition and machine learning, Springer, 2006.

[2] T.S. Guzella and W.M. Caminhas, A review of machine learning approaches to spam filtering, Expert Systems with
Applications 36(7) (2009), 10206–10222.

[3] S. Bhattacharyya, S. Jha, K. Tharakunnel and J.C. Westland, Data mining for credit card fraud: A comparative study,
Decision Support Systems 50(3) (2011), 602–613.

19



[4] J.B. Schafer, J. Konstan and J. Riedl, Recommender systems in e-commerce, in: Proceedings of the 1st ACM conference
on Electronic commerce, ACM, 1999, pp. 158–166.

[5] P. Domingos, A few useful things to know about machine learning, Communications of the ACM 55(10) (2012), 78–87.

[6] S. Garćıa, J. Luengo and F. Herrera, Data preprocessing in data mining, Springer, 2015, pp. 163–194, Chapter 7. ISBN
ISBN 978-3-319-10247-4.

[7] M.A. Hall, Correlation-based feature selection for machine learning, PhD thesis, University of Waikato Hamilton, 1999.

[8] H. Peng, F. Long and C.H.Q. Ding, Feature selection based on mutual information criteria of max-dependency, max-
relevance, and min-redundancy, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005), 1226–1238.

[9] I. Guyon and A. Elisseeff, An Introduction to Feature Extraction, in: Feature Extraction: Foundations and Applications,
I. Guyon, M. Nikravesh, S. Gunn and L.A. Zadeh, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 1–25.

[10] D.E. Rumelhart, G.E. Hinton, R.J. Williams et al., Learning representations by back-propagating errors, Cognitive
modeling 5(3) (1988), 1.

[11] Y. Bengio, A. Courville and P. Vincent, Representation learning: A review and new perspectives, IEEE transactions on
pattern analysis and machine intelligence 35(8) (2013), 1798–1828.

[12] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521(7553) (2015), 436.

[13] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT press, 2016.

[14] G.E. Hinton and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313(5786)
(2006), 504–507.

[15] P. Vincent, H. Larochelle, Y. Bengio and P.-A. Manzagol, Extracting and composing robust features with denoising
autoencoders, in: Proceedings of the 25th international conference on Machine learning, ACM, 2008, pp. 1096–1103.

[16] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P.-A. Manzagol, Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion, Journal of machine learning research 11(Dec) (2010),
3371–3408.

[17] D. Charte, F. Charte, S. Garćıa, M.J. del Jesus and F. Herrera, A practical tutorial on autoencoders for nonlinear feature
fusion: Taxonomy, models, software and guidelines, Information Fusion 44 (2018), 78–96.

[18] D. Charte, F. Charte, M.J. del Jesus and F. Herrera, A Showcase of the Use of Autoencoders in Feature Learning
Applications, in: From Bioinspired Systems and Biomedical Applications to Machine Learning, J.M. Ferrández Vicente,
J.R. Álvarez-Sánchez, F. de la Paz López, J. Toledo Moreo and H. Adeli, eds, Springer International Publishing, 2019,
pp. 412–421. ISBN ISBN 978-3-030-19651-6.

[19] M.R. Garey and D.S. Johnson, Computers and intractability, Vol. 29, wh freeman New York, 2002.

[20] T. Bäck and H.-P. Schwefel, An overview of evolutionary algorithms for parameter optimization, Evolutionary compu-
tation 1(1) (1993), 1–23.

[21] F.J. Pulgar, F. Charte, A.J. Rivera and M.J. del Jesus, Choosing the proper autoencoder for feature fusion based on
data complexity and classifiers: Analysis, tips and guidelines, Information Fusion 54 (2020), 44–60.

[22] D. Charte, F. Charte, S. Garćıa and F. Herrera, A snapshot on nonstandard supervised learning problems: taxonomy,
relationships, problem transformations and algorithm adaptations, Progress in Artificial Intelligence 8(1) (2019), 1–14.

[23] R. Hecht-Nielsen, Theory of the backpropagation neural network, in: Neural networks for perception, Elsevier, 1992,
pp. 65–93.

[24] H. Robbins and S. Monro, A stochastic approximation method, The annals of mathematical statistics (1951), 400–407.

[25] S. Lawrence and C.L. Giles, Overfitting and neural networks: conjugate gradient and backpropagation, in: Proceedings
of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, Vol. 1, IEEE, 2000, pp. 114–119.

[26] M. Ahmadlou and H. Adeli, Enhanced probabilistic neural network with local decision circles: A robust classifier,
Integrated Computer-Aided Engineering 17(3) (2010), 197–210.

20



[27] N.K. Benamara, M. Val-Calvo, J.R. Álvarez-Sánchez, A. Dı́az-Morcillo, J.M. Ferrández-Vicente, E. Fernández-Jover and
T.B. Stambouli, Real-Time Emotional Recognition for Sociable Robotics Based on Deep Neural Networks Ensemble, in:
International Work-Conference on the Interplay Between Natural and Artificial Computation, Springer, 2019, pp. 171–
180.

[28] H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of educational psychology
24(6) (1933), 417.

[29] R.A. Fisher, The statistical utilization of multiple measurements, Annals of Human Genetics 8(4) (1938), 376–386.

[30] L. Cayton, Algorithms for manifold learning, Technical Report, University of California at San Diego, 2005.

[31] J.A. Lee and M. Verleysen, Nonlinear dimensionality reduction, Springer Science & Business Media, 2007.

[32] W. Yu, G. Zeng, P. Luo, F. Zhuang, Q. He and Z. Shi, Embedding with autoencoder regularization, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2013, pp. 208–223. doi:10.1007/978-
3-642-40994-3 14.

[33] M. Sakurada and T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: Proceed-
ings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, ACM, 2014, pp. 4–11. ISBN
ISBN 978-1-4503-3159-3. doi:10.1145/2689746.2689747.

[34] S. Park, M. Kim and S. Lee, Anomaly Detection for HTTP Using Convolutional Autoencoders, IEEE Access 6 (2018),
70884–70901. doi:10.1109/ACCESS.2018.2881003.

[35] J. Xie, L. Xu and E. Chen, Image denoising and inpainting with deep neural networks, in: Advances in neural information
processing systems, 2012, pp. 341–349.

[36] X. Lu, Y. Tsao, S. Matsuda and C. Hori, Speech enhancement based on deep denoising autoencoder, in: Interspeech,
2013, pp. 436–440.

[37] C. Blum and A. Roli, Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM com-
puting surveys (CSUR) 35(3) (2003), 268–308.

[38] H. Adeli and K.C. Sarma, Cost optimization of structures: fuzzy logic, genetic algorithms, and parallel computing, John
Wiley & Sons, 2006.

[39] E. Aarts and J. Lenstra, Local Search in Combinatorial Optimization Wiley, New York (1997).

[40] M. Den Besten, T. Stützle and M. Dorigo, Design of iterated local search algorithms, in: Workshops on Applications of
Evolutionary Computation, Springer, 2001, pp. 441–451.

[41] R.E. Korf, Real-time heuristic search, Artificial intelligence 42(2–3) (1990), 189–211.

[42] W. Zhang, Algorithms for Combinatorial Optimization, in: State-Space Search, Springer, 1999, pp. 13–33.

[43] F. Neri, N. Kotilainen and M. Vapa, A Memetic-Neural Approach to Discover Resources in P2P Networks, in: Recent
Advances in Evolutionary Computation for Combinatorial Optimization, C. Cotta and J. van Hemert, eds, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 113–129. ISBN ISBN 978-3-540-70807-0. doi:10.1007/978-3-540-70807-
0 8.

[44] P.J. Van Laarhoven and E.H. Aarts, Simulated annealing, in: Simulated annealing: Theory and applications, Springer,
1987, pp. 7–15.

[45] R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA journal on computing 6(2) (1994), 126–140.

[46] A.A. Freitas, A review of evolutionary algorithms for data mining, in: Data Mining and Knowledge Discovery Handbook,
Springer, 2009, pp. 371–400.

[47] T. Bäck and H.-P. Schwefel, An Overview of Evolutionary Algorithms for Parameter Optimization, Evolutionary Com-
putation 1 (1993), 1–23.

[48] Q. Wang, H.-L. Liu, J. Yuan and L. Chen, Optimizing the energy-spectrum efficiency of cellular systems by evolutionary
multi-objective algorithm, Integrated Computer-Aided Engineering 26(2) (2019), 207–220.

[49] C. Kyriklidis and G. Dounias, Evolutionary computation for resource leveling optimization in project management,
Integrated Computer-Aided Engineering 23(2) (2016), 173–184.

21



[50] M. Kociecki and H. Adeli, Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof
structures with complex curvatures, Engineering Applications of Artificial Intelligence 32 (2014), 218–227.

[51] M. Kociecki and H. Adeli, Shape optimization of free-form steel space-frame roof structures with complex geometries
using evolutionary computing, Engineering Applications of Artificial Intelligence 38 (2015), 168–182.

[52] C. Blum, Ant colony optimization for the edge-weighted k-cardinality tree problem, in: Proceedings of the 4th Annual
Conference on Genetic and Evolutionary Computation, Morgan Kaufmann Publishers Inc., 2002, pp. 27–34.

[53] R. Poli, J. Kennedy and T. Blackwell, Particle swarm optimization, Swarm intelligence 1(1) (2007), 33–57.

[54] J.A. Foster, Computational genetics: Evolutionary computation, Nature Reviews Genetics 2(6) (2001), 428.

[55] T. Bäck, D.B. Fogel and Z. Michalewicz, Evolutionary computation 1: Basic algorithms and operators, CRC press, 2018.

[56] L. Davis, Handbook of genetic algorithms (1991).

[57] R. Storn and K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous
spaces, Journal of global optimization 11(4) (1997), 341–359.

[58] I. Rechenberg, The evolution strategy. a mathematical model of darwinian evolution, in: Synergetics—from microscopic
to macroscopic order, Springer, 1984, pp. 122–132.

[59] H. KIM and H. ADELI, Discrete cost optimization of composite floors using a floating-point genetic algorithm, Engi-
neering Optimization 33(4) (2001), 485–501.

[60] F. Friedrichs and C. Igel, Evolutionary tuning of multiple SVM parameters, Neurocomputing 64 (2005), 107–117.

[61] S.R. Young, D.C. Rose, T.P. Karnowski, S.-H. Lim and R.M. Patton, Optimizing deep learning hyper-parameters through
an evolutionary algorithm, in: Proceedings of the Workshop on Machine Learning in High-Performance Computing
Environments, ACM, 2015, p. 4.

[62] H. Kitano, Empirical Studies on the Speed of Convergence of Neural Network Training Using Genetic Algorithms., in:
AAAI, 1990, pp. 789–795.

[63] M. Scholz, A learning strategy for neural networks based on a modified evolutionary strategy, in: International Confer-
ence on Parallel Problem Solving from Nature, Springer, 1990, pp. 314–318.

[64] L.D. Whitley and T. Hanson, Optimizing Neural Networks Using FasterMore Accurate Genetic Search, in: Proceedings
of the 3rd international conference on genetic algorithms, Morgan Kaufmann Publishers Inc., 1989, pp. 391–397.

[65] K. Chellapilla and D.B. Fogel, Evolving neural networks to play checkers without relying on expert knowledge, IEEE
transactions on neural networks 10(6) (1999), 1382–1391.

[66] D. Floreano, P. Dürr and C. Mattiussi, Neuroevolution: from architectures to learning, Evolutionary Intelligence 1(1)
(2008), 47–62.

[67] F. Gruau, Automatic definition of modular neural networks, Adaptive behavior 3(2) (1994), 151–183.

[68] K.O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, Designing neural networks through neuroevolution, Nature
Machine Intelligence 1(1) (2019), 24–35.

[69] I. Guyon, L. Sun-Hosoya, M. Boullé, H.J. Escalante, S. Escalera, Z. Liu, D. Jajetic, B. Ray, M. Saeed, M. Sebag et al.,
Analysis of the AutoML Challenge Series 2015–2018, in: Automated Machine Learning, Springer, 2019, pp. 177–219.

[70] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy and F. Hutter, NAS-Bench-101: Towards Reproducible Neural
Architecture Search, in: International Conference on Machine Learning, 2019, pp. 7105–7114.

[71] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum and F. Hutter, Efficient and robust automated machine
learning, in: Advances in neural information processing systems, 2015, pp. 2962–2970.

[72] B. van Stein, H. Wang and T. Bäck, Automatic Configuration of Deep Neural Networks with Parallel Efficient Global
Optimization, in: 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019, pp. 1–7.

[73] H. Jin, Q. Song and X. Hu, Auto-Keras: An Efficient Neural Architecture Search System, in: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM], pages=1946—1956, year=2019,.

[74] K. Price, R.M. Storn and J.A. Lampinen, Differential evolution: a practical approach to global optimization, Springer
Science & Business Media, 2006.

22



[75] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images (2009).

[76] G. Tsoumakas, I. Katakis and I. Vlahavas, Effective and Efficient Multilabel Classification in Domains with Large
Number of Labels, in: Proc. ECML/PKDD Workshop on Mining Multidimensional Data, Antwerp, Belgium, MMD08,
2008, pp. 30–44.

[77] H. Xiao, K. Rasul and R. Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algo-
rithms, 2017.

[78] I.W. Evett and E.J. Spiehler, Rule induction in forensic science, KBS in Goverment (1987), 107–118.

[79] V.G. Sigillito, S.P. Wing, L.V. Hutton and K.B. Baker, Classification of radar returns from the ionosphere using neural
networks, Johns Hopkins APL Technical Digest 10(3) (1989), 262–266.

[80] L. Deng, The MNIST database of handwritten digit images for machine learning research [best of the web], IEEE Signal
Processing Magazine 29(6) (2012), 141–142.

[81] M. Buscema, Metanet*: The theory of independent judges, Substance use & misuse 33(2) (1998), 439–461.

[82] R.P. Gorman and T.J. Sejnowski, Analysis of hidden units in a layered network trained to classify sonar targets, Neural
networks 1(1) (1988), 75–89.

[83] L.A. Kurgan, K.J. Cios, R. Tadeusiewicz, M. Ogiela and L.S. Goodenday, Knowledge discovery approach to automated
cardiac SPECT diagnosis, Artificial intelligence in medicine 23(2) (2001), 149–169.

[84] J.D. Castro, Arch linux, in: Introducing Linux Distros, Springer, 2016, pp. 235–252.

[85] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang and V. Volkov, Parallel
computing experiences with CUDA, IEEE micro 28(4) (2008), 13–27.

[86] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro and E. Shelhamer, cudnn: Efficient primitives
for deep learning, arXiv preprint arXiv:1410.0759 (2014).

[87] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al.,
Tensorflow: A system for large-scale machine learning, in: 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), 2016, pp. 265–283.

[88] F. Chollet et al., Keras: Deep learning library for theano and tensorflow, URL: https://keras. io/k 7(8) (2015), T1.

[89] D. Charte, F. Herrera and F. Charte, Ruta: implementations of neural autoencoders in R, Knowledge-Based Systems
174 (2019), 4–8.

[90] T. Tieleman and G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude,
COURSERA: Neural networks for machine learning 4(2) (2012), 26–31.

23

http://arxiv.org/abs/1410.0759

	1 Introduction
	1.1 Problem formulation
	1.2 Literature review

	2 Autoencoder architecture search with EvoAAA
	2.1 Components to be optimized during AE construction
	2.2 The EvoAAA proposal
	2.2.1 Chromosome representation
	2.2.2 Autoencoder complexity penalization
	2.2.3 Search space


	3 Algorithmic framework of EvoAAA
	3.1 Evolutionary search algorithms
	3.2 Data sets
	3.3 Restrictions and evaluation
	3.4 Experiments and results
	3.5 Discussion
	3.5.1 Analysis of performance
	3.5.2 Analysis of explored space
	3.5.3 Analysis of solution complexity
	3.5.4 Analysis of running times
	3.5.5 Solutions explored over time
	3.5.6 Achieved improvement vs explored solutions
	3.5.7 Search convergence
	3.5.8 Influence of the penalization factor


	4 Concluding remarks

