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Time Series Forecasting with KNN in R:
the tsfknn Package
by Francisco Martínez, María P. Frías, Francisco Charte and Antonio J. Rivera

Abstract In this paper the tsfknn package for time series forecasting using k-nearest neighbor regres-
sion is described. This package allows users to specify a KNN model and to generate its forecasts.
The user can choose among different multi-step ahead strategies and among different functions to
aggregate the targets of the nearest neighbors. It is also possible to assess the forecast accuracy of the
KNN model.

Introduction

Time series forecasting has been performed traditionally using statistical methods such as ARIMA
models or exponential smoothing (Hyndman and Athanasopoulos, 2014). However, the last decades
have witnessed the use of computational intelligence techniques to forecast time series. Although
artificial neural networks is the most prominent machine learning technique used in time series
forecasting (Zhang et al., 1998), other approaches, such as Gaussian Processes (Andrawis et al., 2011)
or KNN (Martínez et al., 2017), have also been applied. Compared with classical statistical models,
computational intelligence methods exhibit interesting features, such as their nonlinearity or the lack
of an underlying model, that is, they are non-parametric.

Statistical methodologies for time series forecasting are present in R as excellent packages. For
example, the forecast package (Hyndman and Khandakar, 2008) includes implementations of ARIMA,
exponential smoothing, the Theta method (Hyndman and Billah, 2003) or basic techniques that can
be used as benchmark methods—such as the random walk approach. On the other hand, although a
great variety of computational intelligence approaches for regression are available in R, such us the
caret package (Kuhn, 2008), these approaches cannot be directly applied to time series forecasting.
Fortunately, some new packages are filling this gap. For example, the nnfor package (Kourentzes,
2017) or the nnetar function from the forecast package allow users to predict time series using artificial
neural networks.

KNN is a very popular algorithm used in classification and regression (Wu et al., 2007). This
algorithm simply stores a collection of examples. In regression, each example consists of a vector
of features describing the example and its associated numeric target value. Given a new example,
KNN finds its k most similar examples, called nearest neighbors, according to a distance metric such
as the Euclidean distance, and predicts its value as an aggregation of the target values associated
with its nearest neighbors. In this paper we describe the tsfknn R package for univariate time series
forecasting using KNN regression.

The rest of the paper is organized as follows. Firstly, we explain how KNN regression can be
applied in a time series forecasting context using the tsfknn package. Next, the different multi-step
ahead strategies implemented in our package are explained. Some additional features of the package
related to how the KNN model is specified are also discussed. The last sections explain how to assess
the forecast accuracy of a model and compare the package with other R packages based on machine
learning approaches.

Time series forecasting with KNN regression

In this section we first explain how KNN regression can be applied to forecast time series. Next, we
describe how the tsfknn package can be used to forecast a time series.

As described above, KNN regression simply holds a collection of training instances. The i-th
training instance consists of a vector of n features: ( f i

1, f i
2, . . . , f i

n), describing the instance and an
associated target vector of m attributes: (ti

1, ti
2, . . . , ti

m). Given a new instance, whose features are
known—(q1, q2, . . . , qn)—but whose target is unknown, the features of the new instance are used
to find its k most similar training instances according to the vectors of features and a similarity or
distance metric. For example, assuming that the similarity metric is the Euclidean distance, the
distance between the new instance and the i-th training instance is computed as follows:
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√
n

∑
x=1

(
f i
x − qx

)2 (1)

The k training instances that are closest to the new instance are considered their k most similar
instances or k nearest neighbors. KNN is based on learning by analogy. Given a new instance, we
think that the targets of its nearest neighbors are probably similar to its unknown target. This way, the
targets of the nearest neighbors are aggregated to predict the target of the new instance. For example,
assuming that the targets or the k nearest neighbors are the vectors: t1, t2, ..., tk, they can be averaged
to predict the target of the new instance as:

k

∑
i=1

ti

k
(2)

In short, KNN stores a collection of training instances described by n features. Each training
instance represents a point in an n-dimensional space. Given a new instance, KNN finds its k closest
instances in the n-dimensional space in the hope that their targets are similar to its unknown target.

Now, let us see how KNN can be applied to time series forecasting. In this case, the target
associated with a training instance is a collection of values of the time series and the features de-
scribing the instance are lagged values of the target—that is, we have an autoregressive model.
For example, let us start with a monthly time series containing 132 observations, i.e., 11 years:
t = {x1, x2, x3, x4, x5, x6, x7, x8, ..., x132} and assume that we want to predict its next future month.
Because we are going to predict only one value the target of a training instance is a value of the time
series. Let us also assume that we decide that the features describing a target are its first twelve
lagged values in the time series—that we will denote as lags 1:12. Therefore, the training instances
or examples associated with the time series t are shown in Table 1. Now, let us see which is the new
instance used to predict the next future value of the time series. Because we are using lags 1 to 12 as
feature vector, the feature vector associated with the next future point is vector (x121, x122, ..., x132),
which is compounded of the last twelve values of the time series. If, for example, k is equal to 2 the
2-nearest neighbors of the new instance are found and their targets will be aggregated to predict the
next future month. The rationale behind the use of KNN for time series forecasting is that a time series
can contain repetitive patterns. Given the last pattern of a time series we look for similar patterns
in the past in the hope that their subsequent patterns will be similar to the future values of the time
series.

Table 1: Training examples for time series t = {x1, x2, x3, x4, x5, x6, x7, x8, ..., x132} for one-step ahead
forecasting and lags 1:12 as feature vector

Features Target

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 x13
x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13 x14
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14 x15
... ...
x120, x121, x122, x123, x124, x125, x126, x127, x128, x129, x130, x131 x132

Let us see now how the tsfknn package can be used to forecast a time series. In our package, you
can consult the training examples associated with a KNN model with the knn_examples function:

> timeS <- window(nottem, end = c(1930, 12))
> pred <- knn_forecasting(timeS, h = 1, lags = 1:12, k = 2)
> head(knn_examples(pred))

Lag12 Lag11 Lag10 Lag9 Lag8 Lag7 Lag6 Lag5 Lag4 Lag3 Lag2 Lag1 H1
[1,] 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2
[2,] 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8
[3,] 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1
[4,] 46.7 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1 47.0
[5,] 54.1 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1 47.0 54.1
[6,] 58.5 57.7 56.4 54.3 50.5 42.9 39.8 44.2 39.8 45.1 47.0 54.1 58.7

Before consulting the training examples with knn_examples, you have to build the model. This is
done with the function knn_forecasting that builds a model associated with a time series and uses the
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Figure 1: Result of plotting a prediction.

model to predict the future values of the time series. Let us see the main arguments of this function:

timeS : the time series to be forecast.

h : the forecasting horizon, that is, the number of future values to be predicted.

lags : an integer vector indicating the lagged values of the target used as its describing features in the
examples—for instance, 1:12 means that lagged values 1 to 12 should be used.

k : the number of nearest neighbors used by the KNN model.

knn_forecasting is very handy because, as commented above, it builds the KNN model and
then uses the model to predict the time series. This function returns a "knnForecast" object with
information of the model and its prediction. As we have seen above, you can use the function
knn_examples to see the training examples associated with the model. You can also consult the
prediction or plot it through the "knnForecast" object:

> pred$prediction
Jan

1931 37.4
> plot(pred)

Figure 1 shows the result of plotting the prediction. It is also possible to see how the prediction was
made. That is, you can consult the new instance whose target was predicted and its nearest neighbors.
This information is obtained with the nearest_neighbors function applied to a "knnForecast" object:

> nearest_neighbors(pred)
$`instance`
Lag 12 Lag 11 Lag 10 Lag 9 Lag 8 Lag 7 Lag 6 Lag 5 Lag 4 Lag 3 Lag 2 Lag 1
41.6 37.1 41.2 46.9 51.2 60.4 60.1 61.6 57.0 50.9 43.0 38.8

$nneighbors
Lag 12 Lag 11 Lag 10 Lag 9 Lag 8 Lag 7 Lag 6 Lag 5 Lag 4 Lag 3 Lag 2 Lag 1 H1

1 40.8 41.1 42.8 47.3 50.9 56.4 62.2 60.5 55.4 50.2 43.0 37.3 34.8
2 39.3 37.5 38.3 45.5 53.2 57.7 60.8 58.2 56.4 49.8 44.4 43.6 40.0

Because we have used lags 1:12 as features, the features associated with the next future value of the
time series are the last twelve values of the time series. The targets of the two most similar examples
or nearest neighbors are 34.8 and 40. Their average is the prediction: 37.4. A nice plot including the
new instance, its nearest neighbors and the prediction can be obtained as follows:

> library(ggplot2)
> autoplot(pred, highlight = "neighbors", faceting = FALSE)

The result of executing this code snippet is shown in Figure 2. To recapitulate, in order to specify a
KNN model you have to set:
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Figure 2: Plotting the instance, its nearest neighbors and the prediction.

• The lags used to build the KNN examples. They determine the lagged values used as features
or autoregressive explanatory variables.

• k, that is, the number of nearest neighbors used in the prediction.

• The forecasting horizon, that is, the number of future points to predict.

Multi-step ahead strategies

In the previous section we have seen an example of one-step ahead prediction with KNN. Nonetheless,
it is very common to forecast more than one value into the future. To this end, a multi-step ahead
strategy has to be chosen (Ben Taieb et al., 2012). Our package implements two common strategies:
the MIMO—Multiple Input Multiple Output—approach and the recursive or iterative approach. It
must be noted that when only one future value is predicted both strategies are equivalent. In the next
subsections these strategies are explained, together with examples of how they can be used in our
package.

The MIMO strategy

The Multiple Input Multiple Output strategy is commonly applied with KNN and it is characterized
by the use of a vector of target values. The length of this vector is equal to the number of periods to
be forecast. For example, let us assume that we are working with a time series giving the monthly
totals of car drivers killed in Great Britain and we want to forecast the number of deaths for the next
12 months. In this situation, a good choice for the lags used as features would be 1:12, i.e., the totals of
car drivers killed in the previous 12 months—an explanation about why lags 1:12 are a good choice is
given in the section about default parameters. If the MIMO strategy is chosen, then a training example
consists of:

• a target vector with the number of deaths of 12 consecutive months and

• a feature vector with the number of deaths in the previous 12 consecutive months—just before
the 12 months of the target vector.

The new instance would be the number of car drivers killed in the last 12 months of the time series.
This way, we would look for the number of deaths most similar to the last 12 months in the time series
and we would predict an aggregation of their subsequent 12 months. In the following example we
predict the next 12 months using the MIMO strategy:

> timeS <- window(UKDriverDeaths, end = c(1979, 12))
> pred <- knn_forecasting(timeS, h = 12, lags = 1:12, k = 2, msas = "MIMO")
> autoplot(pred, highlight = "neighbors", faceting = FALSE)

The forecast for the next 12 months can be seen in Figure 3. The last 12 values of the time series are
the features of the new instance whose target has to be predicted. The two sequences of 12 consecutive
values most similar to this instance are found—in blue—and their subsequent 12 values—in green—are
averaged to obtain the prediction—in red.
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Figure 3: Applying the MIMO strategy to forecast the next 12 months.

Figure 4: Applying the recursive strategy to forecast horizon 1.

The recursive strategy

The recursive or iterative strategy is the approach used by ARIMA or exponential smoothing to
forecast several periods. In this strategy a model that only forecasts one-step ahead is used. Therefore,
the model is applied iteratively to forecast all the future periods. When historical observations to be
used as features of the new instance are unavailable, previous predictions are used instead.

Because the recursive strategy uses a one-step ahead model, this means that, in the case of KNN,
the target of a training example only contains one value. For instance, let us see how the recursive
strategy works with the following example in which the next two future months of a monthly time
series are predicted:

> pred <- knn_forecasting(USAccDeaths, h = 2, lags = 1:12, k = 2, msas = "recursive")
> autoplot(pred, highlight = "neighbors")

In this example we have used lags 1:12 to specify the features of an example. To predict the first
future point the last 12 values of the time series are used as “its features”—see Figure 4. To predict the
second future point "its features" are the last eleven values of the time series and the prediction for the
first future point—see Figure 5.

Setting the KNN parameters

In this section several additional features of our package related to model selection are described. In
order to select a KNN model the following parameters have to be chosen:

• The distance function used to find the nearest neighbors.

• The combination function used to aggregate the targets of the nearest neighbors.
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Figure 5: Applying the recursive strategy to forecast horizon 2: the previous prediction is used as
feature.

• The number of nearest neighbors, that is, the k parameter.

• The lags used as autoregressive explanatory variables, that is, the features describing the training
examples.

• The multi-step ahead strategy.

In the following subsections some features related to setting the KNN parameters are explained.

Distance and combination function

Our package uses the Euclidean distance to find the nearest neighbors, although we can implement
other distance metrics in the future.

Regarding the combination function, the targets of the k nearest neighbors are averaged by default.
However, it is possible to combine the targets using other aggregation functions. Currently, our
package allows users to choose among the mean, the median and a weighted combination. In order to
select the combination function the cb parameter of the knn_forecasting function has to be used.

Next, we explain how the weighted combination is computed. The goal is to give more weight to
the closer neighbors. Let us denote as di and ti the distance between the i-th nearest neighbor and the
the new instance and the target of the i-th nearest neighbor respectively. Then, we define wi = 1/d2

i to
be the reciprocal of the squared distance to the i-th nearest neighbor and the prediction is computed as
the following weighted combination of the targets:

k
∑

i=1
witi

k
∑

i=1
wi

(3)

This scheme fails when the distance to a training example is 0. In this special case, the target of
this training example, whose features are identical to the new instance, is selected as the prediction.

An ensemble of several models with different k parameters

In order to specify a KNN model the k parameter has to be chosen. If k is too small, then the prediction
can more easily be affected by noise. On the other hand, if k is too large, then we are using examples
far apart from the new instance. Several strategies can be used to choose the k parameter. A first, fast,
straightforward solution is to use some heuristic—it is recommended setting k to the square root of
the number of training examples. Another approach is to select k using an optimization tool on a
validation set. k should minimize a forecast accuracy measure such as MAPE (Hyndman and Koehler,
2006). It should be noted that the optimization strategy is very time-consuming.

A third strategy explored in (Martínez et al., 2017) is to use several KNN models with different k
values. Each KNN model generates its forecasts and the forecasts of the different models are averaged
to produce the final forecast. This strategy is based on the success of model combination in time series
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Figure 6: Quarterly time series with a strong seasonal pattern and lags 1:2.

forecasting (Hibon and Evgeniou, 2005). In this way, the use of a time-consuming optimization tool is
avoided and the forecasts are not based on a unique k value. In our package you can use this strategy
specifying a vector of k values:

> pred <- knn_forecasting(ldeaths, h = 12, lags = 1:12, k = c(2, 4))
> pred$prediction

Jan Feb Mar Apr May Jun Jul Aug Sep
1980 2865.375 2866.250 2728.875 2189.000 1816.000 1625.875 1526.250 1404.250 1354.000

Oct Nov Dec
1980 1541.250 1699.250 2198.750

In this example, two KNN models with k equal to 2 and 4 respectively are built. The forecast is the
average of the forecasts produced by both models.

It also must be noted that if the targets are combined using weights, then the choice of the k
parameter is less important because neighbors lose weight as they move away from the new instance.
When the weighted combination is chosen, it even makes sense to set k to the number of training
examples, as generalized regression neural networks do (Yan, 2012).

Default parameters

Sometimes a great number of time series have to be forecast. In that situation, an automatic way
of generating the forecasts is very useful. In this sense, our package is able to use sensible default
parameters. If the user only specifies the time series and the forecasting horizon the KNN parameters
are selected as follows:

• As multi-step ahead strategy MIMO is chosen.

• The combination function used to aggregate the targets is the mean.

• k is selected as a combination of three models using 3, 5 and 7 nearest neighbors respectively.

• In order to select the autoregressive lags the following strategy is used. If the time series is
seasonal and the length of the seasonal period is m, then lags 1:m are used. For example, for
quarterly data lags 1:4 are selected and for monthly data lags 1:12. This way, seasonal patterns
can be captured more easily. Let us see why—see also (Martínez et al., 2018). In Figure 6 an
artificial quarterly time series with a strong seasonal pattern is shown. The first quarter has a
mean level higher than the other quarters, which have a similar level. The autoregressive lags
are lags 1:2 and we want to generate a one-step ahead forecast using only the nearest neighbor.
These autoregressive lags can lead to an unsuitable forecast. As can be seen in the figure, the
nearest neighbor has a fourth quarter as its target when a first quarter value is going to be
predicted. In Figure 7 lags 1:4 are used and the target associated with the nearest neighbor is a
first quarter value. If the time series is not seasonal, for example yearly data, then the lags with
significant autocorrelation in the partial autocorrelation function (PACF) are selected. Although
the PACF only tests for linear relationships, experience has shown us that this is an effective
way of selecting input variables (Martínez et al., 2017). If none of the previous two conditions
are met, then lags 1:5 are used. Notice that this way of selecting the autoregressive lags is quite
fast.
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Figure 7: Quarterly time series with a strong seasonal pattern and lags 1:4.

Evaluating forecast accuracy

Once a model has been built, it is natural to want to assess its forecast accuracy. In the tsfknn package
this is done with the rolling_origin function. This function uses the classical approach of dividing a
dataset into training and test sets. In time series forecasting the test set consists of the last observations
of the time series. For example:

> pred <- knn_forecasting(ldeaths, h = 12, lags = 1:12, k = 2)
> ro <- rolling_origin(pred, h = 6, rolling = FALSE)

As mentioned above, knn_forecasting builds a KNN model and returns a "knnForecast" object
with information about the model. The rolling_origin function takes a "knnForecast" object as its
first parameter. From this, information about the time series and the metaparameters of the KNN
model is obtained; for example, the autoregressive lags, the number of nearest neighbors or the
multi-step ahead strategy. The second parameter of rolling_origin is the size of the test set. In the
example, the size is 6 and, therefore, the last 6 observations of the time series will be used as test set and
the remaining observations as training set. rolling_origin returns a "knnForecastRO" object with
information about the evaluation. For example, the test set, predictions and errors can be consulted:

> print(ro$test_sets)
h=1 h=2 h=3 h=4 h=5 h=6

[1,] 1461 1354 1333 1492 1781 1915
> print(ro$predictions)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] 1513.5 1363.5 1351.5 1567 1587.5 2392
> print(ro$errors)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] -52.5 -9.5 -18.5 -75 193.5 -477

It is also possible to consult several forecasting accuracy measures about the predictions:

> ro$global_accu
RMSE MAE MAPE

213.613748 137.666667 7.747168

The forecasting accuracy measures are: root mean square error, mean absolute error and mean
absolute percentage error. A plot of the time series and the forecasts can be obtained:

> plot(ro)

The result of this plot can be seen in Figure 8. In this figure the last six observations of the time
series are the test set and the forecasts are the red points.

Evaluation based on a rolling origin

A more sophisticated version of training/test sets is to use a rolling origin evaluation. The idea is as
follows. The last n observations of a time series are used as test data. Then n evaluations are performed.
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Figure 8: A time series and its forecast for the last 6 observations.

Figure 9: Training (blue) and test (red) sets for rolling origin evaluation with 6 observations.

In the first evaluation the last n observations are the test set and the previous ones the training set.
A model is fitted with the training set, the predictions are generated and the errors observed. In the
second evaluation the last n− 1 observations are used as test set, and so on until the last evaluation
in which the test set is the last value of the time series. Figure 9 illustrates the different training and
test sets for a rolling origin evaluation of the last six values of a time series. As can be observed, the
origin of the forecasts rolls forward in time. The rolling origin technique aims to get the most out
of the test data in terms of evaluation. For example, with n observations in the test data, n one-step
ahead forecasts are generated, n− 1 two-steps ahead forecasts, and so on. On the other hand, the
rolling origin evaluation is a time-consuming task, because several models have to be fitted.

The function rolling_origin uses rolling origin evaluation by default:

> pred <- knn_forecasting(ldeaths, h = 12, lags = 1:12, k = 2)
> ro <- rolling_origin(pred, h = 6)
> print(ro$test_sets)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] 1461 1354 1333 1492 1781 1915
[2,] 1354 1333 1492 1781 1915 NA
[3,] 1333 1492 1781 1915 NA NA
[4,] 1492 1781 1915 NA NA NA
[5,] 1781 1915 NA NA NA NA
[6,] 1915 NA NA NA NA NA
> print(ro$predictions)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] 1513.5 1363.5 1351.5 1567.0 1587.5 2392
[2,] 1363.5 1351.5 1567.0 1587.5 2392.0 NA
[3,] 1351.5 1567.0 1587.5 2392.0 NA NA
[4,] 1567.0 1587.5 2392.0 NA NA NA
[5,] 1587.5 2392.0 NA NA NA NA
[6,] 2392.0 NA NA NA NA NA
> print(ro$errors)

h=1 h=2 h=3 h=4 h=5 h=6
[1,] -52.5 -9.5 -18.5 -75.0 193.5 -477
[2,] -9.5 -18.5 -75.0 193.5 -477.0 NA
[3,] -18.5 -75.0 193.5 -477.0 NA NA
[4,] -75.0 193.5 -477.0 NA NA NA

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 238

Figure 10: Forecast for the test set with the last two observations.

[5,] 193.5 -477.0 NA NA NA NA
[6,] -477.0 NA NA NA NA NA

Each row in the output represents a different evaluation. Now, the global_accu field of the
"knnForecastRO" object stores measures of the accuracy of all the forecasts in all the evaluations:

> ro$global_accu
RMSE MAE MAPE

274.19569 202.69048 11.09727

The forecast accuracy measures for the different prediction horizons can also be consulted:

> ro$h_accu
h=1 h=2 h=3 h=4 h=5 h=6

RMSE 213.613748 232.821283 260.25877 300.33107 363.98575 477.00000
MAE 137.666667 154.700000 191.00000 248.50000 335.25000 477.00000
MAPE 7.747168 8.577916 10.54699 13.60004 17.88665 24.90862

As expected, the errors grow with the increasing horizon. Finally, a plot of any of the different
forecasts performed with the rolling origin evaluation can be obtained. For example:

> plot(ro, h = 2)

produces Figure 10.

A comparison with other time series forecasting packages

In this section our package is compared with other software for univariate time series forecasting in R.
In the CRAN Task Views: Time Series Analysis, Econometrics and Finance some models for time series
forecasting can be found, from GARCH models to ensembles of models, such us the forecastHybrid
package (Shaub and Ellis, 2019). Most of the functions found in these packages use statistical models
such as ARIMA or exponential smoothing. The forecast package is arguably the best package for
time series forecasting. It implements all of the models that can be found in the stats package and
many others such as the Theta method or multilayer perceptron. Furthermore, this package includes
additional tools for plotting seasonal time series, doing Box-Cox transformations, etc.

The packages most closely related to our package are those that are based on machine learning
approaches. Below, a brief description of these packages is given:

GMDH In this package the GMDH-type neural network algorithms are applied in order to perform
short term forecasting for a univariate time series (Dag and Yozgatligil, 2016).

NTS This package contains a function, NNsetting, that allows users to create the examples needed to
feed a neural network. However, the package does not allow forecasts to be generated directly.

tsDyn Allows users to predict a time series using a multi-layer perceptron with one hidden layer
computed using the nnet function from the nnet package.

nnfor Uses the neuralnet package to build multi-layer perceptrons. It is also possible to use extreme
learning machines through the elm function.
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forecast This package contains the nnetar function used to forecast a time series using a multi-layer
perceptron with a hidden layer.

Table 2 shows a comparison of these packages in terms of the following features:

• Is it possible to use arbitrary autoregressive lags? In some packages, for example, the lags have
to be consecutive values.

• Is it possible to generate the forecasts indicating only the time series and the forecasting horizon?

• Does it include the package tools for plotting the forecasts and other information?

• Is rolling origin evaluation implemented?

• Does the package generate prediction intervals for the forecasts?

• Is it possible to include exogenous variables as predictors in the model?

Table 2: Properties of the packages using machine learning approaches.

GMDH tsDyn nnfor forecast tsfknn

Arbitrary lags no no yes no yes
Default parameters yes no yes yes yes
Plotting facilities no yes yes yes yes
Rolling origin evaluation no no yes yes yes
Prediction intervals yes no no yes no
Exogenous variables no no yes yes no

We have also conducted a comparison of the methods found in these packages based on forecast
accuracy and running time. For this purpose, data from the NN3 forecasting competition (Crone et al.,
2011) has been used. In this competition 111 monthly time series of industry data were used. The
length of the series ranges from 52 to 120 observations and there is also a balanced mix of seasonal
and non-seasonal series. As in the NN3 competition, the next 18 future months of every time series
have to be predicted. The MAPE has been used to assess the forecast accuracy. Given the forecast F for
a NN3 time series with actual values X:

MAPE =
100
18

18

∑
t=1

∣∣∣∣Xt − Ft
Xt

∣∣∣∣
Given a certain method, its MAPE is computed for the 111 time series and averaged in order to

obtain a global MAPE. This global MAPE appears in the first row of Table 3 for the different methods.
In the comparison the package GMDH has not been included because at most it allows users to forecast
5-steps ahead. elm and mlp are functions from the nnfor package for computing extreme learning
machines and multi-layer perceptrons respectively. auto.arima and ets are functions belonging to the
forecast package that implement ARIMA and exponential smoothing. When calling the functions we
have specified as few parameters as possible, so that the function selects automatically or by default
the value of the parameters. The statistical models have achieved the best results. Among the machine
learning approaches our package is the winner.

In the second row of Table 3 the time in seconds needed for fitting the model and generating the
forecasts is shown. There are significant differences between the methods, with our package being one
of the fastest methods.

Table 3: Properties of the packages using machine learning approaches.

tsDyn elm mlp nnetar auto.arima ets tsfknn

MAPE 20.73 18.76 20.95 18.38 15.64 15.52 17.06
Time 2 3332 690 15 421 105 4

Functions and methods in the tsfknn package

In this section a succinct description of all the functions and methods in the tsfknn package is given.
Most of the functions have already been described above. For those functions not mentioned above a
brief example of use is given:
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knn_forecasting given a time series and some metaparameters this function builds a KNN model for
forecasting the time series. It also uses this model to make a prediction of the future values of
the time series. Information about the model and the prediction is returned in a "knnForecast"
object.

knn_examples shows the examples associated with a KNN model.
nearest_neighbors shows the new instance used in a prediction and its nearest neighbors.
plot and autoplot plot a time series and its forecast.
rolling_origin assesses the forecast accuracy of a KNN model.
print and summary show information about a model and its prediction.
predict generates new predictions for a given KNN model.
n_training_examples indicates the number of examples that a KNN model would have for a given

time series and some metaparameters.

Now, a quick example of how to use the functions not explained previously in the paper is given.
The methods print and summary produce the expected result, i.e., they show some information about
the model and its prediction:

> pred <- knn_forecasting(mdeaths, h = 3)
> print(pred)

Call: knn_forecasting(timeS = mdeaths, h = 3)

Multiple-Step Ahead Strategy: MIMO
K (number of nearest neighors): 3 models with 3, 5 and 7 neighbors repectively
Autoregressive lags: 1 2 3 4 5 6 7 8 9 10 11 12
Number of examples: 58
Targets are combined using the mean function.
> summary(pred)

Call: knn_forecasting(timeS = mdeaths, h = 3)

Multiple-Step Ahead Strategy: MIMO
K (number of nearest neighors): 3 models with 3, 5 and 7 neighbors repectively
Autoregressive lags: 1 2 3 4 5 6 7 8 9 10 11 12
Number of examples: 58
Targets are combined using the mean function.
Forecasting horizon: 3
Forecast:

Jan Feb Mar
1980 1990.562 2106.390 1999.143

The method predict is used to generate new forecasts using a previously fitted model:

> pred <- knn_forecasting(mdeaths, h = 3, k = 2, msas = "recursive")
> new_pred <- predict(pred, h = 12)
> print(new_pred$prediction)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct
1980 2141.0 2052.0 1894.0 1477.0 1570.5 1216.5 1130.0 1045.5 991.5 1049.5

Nov Dec
1980 1144.5 1520.5

Finally, n_training_examples is a handy function for knowing how many training example would
have a model:

> n_training_examples(mdeaths, h = 3, lags = 1:12, msas = "MIMO")
[1] 58

Summary

There is hardly any package in R for applying computational intelligence regression methods to time
series forecasting. In this paper we have presented the tsfknn package that allows users to forecast
a time series using KNN regression. The interface of the package is quite simple, allowing users to
specify a KNN model and to predict a time series using the model. Furthermore, several plots can be
generated illustrating how the prediction has been computed.
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