
Neurocomputing 326–327 (2019) 110–122 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

REMEDIAL-HwR: Tackling multilabel imbalance through label 

decoupling and data resampling hybridization 

Francisco Charte 

a , ∗, Antonio J. Rivera 

a , María J. del Jesus a , Francisco Herrera 

b , c 

a Department of Computer Science, University of Jaén, 23071 Jaén, Spain 
b Department of Computer Science and A.I., University of Granada, 18071 Granada, Spain 
c Faculty of Computing and Information Technology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia 

a r t i c l e i n f o 

Article history: 

Received 1 June 2016 

Revised 4 December 2016 

Accepted 29 January 2017 

Available online 12 September 2017 

Keywords: 

Multilabel classification 

Imbalanced learning 

Resampling algorithms 

Label concurrence 

a b s t r a c t 

The learning from imbalanced data is a deeply studied problem in standard classification and, in re- 

cent times, also in multilabel classification. A handful of multilabel resampling methods have been pro- 

posed in late years, aiming to balance the labels distribution. However, these methods have to face a 

new obstacle, specific for multilabel data, as is the joint appearance of minority and majority labels in 

the same data patterns. We presented recently a new algorithm designed to decouple imbalanced labels 

concurring in the same instance, called REMEDIAL ( REsampling MultilabEl datasets by Decoupling highly 

ImbAlanced Labels ). The goal of this work is to propose REMEDIAL-HwR (REMEDIAL Hybridization with Re- 

sampling) , a procedure to hybridize this method with some of the best resampling algorithms available in 

the literature, including random oversampling, heuristic undersampling and synthetic sample generation 

techniques. These hybrid methods are then empirically analyzed, determining how their behavior is influ- 

enced by the label decoupling process. The analysis of results shows that the proposed method improves 

certain classifiers performance when it is applied over imbalanced datasets with label concurrence. In 

addition, a noteworthy set of guidelines on the combined use of these techniques can be drawn from the 

conducted experimentation. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Classification [1] is one of the most profoundly studied prob-

lems in Data Mining, the latter being part of the process known as

Knowledge Discovery in Databases [2] . Standard classification tasks

comprehend mostly binary and multiclass cases. The main goal is

to train, through machine learning algorithms, a model able to au-

tomatically classify new incoming data patterns. 

Unlike standard classification methods, which produce as out-

put a class label only, multilabel classifiers (MLC) [3–6] must pro-

vide a set of relevant labels for each processed instance. MLC has

been applied to disease diagnosis in children [7] , suggestion of tags

for new posts in question answering forums [8] , image classifica-

tion [9] , and identification of multi-functional enzyme [10] , among

other tasks. The amount of MLC algorithms proposed in the last

decade is impressive. 

Imbalanced learning [11–14] is a well-known problem in binary

and multiclass classification, and it also affects multilabel datasets
∗ Corresponding author. 
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MLDs). The class frequencies in an imbalanced dataset present

arge inequalities, a fact that makes harder the learning of an effec-

ive classification model. As stated in [15] , most MLDs show signif-

cant imbalance levels. One of the strategies to face this problem

onsists in balancing the labels distribution, usually by means of

ome kind of resampling procedure [16] . 

The resampling approach is also among the most popular op-

ions when it comes to face imbalance learning in the multilabel

eld. Several resampling algorithms for MLC [15,17–19] have been

lready proposed in late years, including random oversampling and

versampling, heuristic undersampling and synthetic instance gen-

ration solutions. 

Multilabel resampling methods must also deal with some im-

alance related specificities of MLDs. One of such problems is de-

cribed in [20] as the concurrence of frequent and rare labels in

he same instance. Due to this matter, balancing the labels dis-

ribution through resampling techniques becomes harder since re-

oving instances with majority labels will also imply the loss of

inority ones. Analogously, adding new instances by cloning exist-

ng ones would increase the frequency of already common labels. 

In [21] we proposed a specialized method to solve this problem,

he REMEDIAL ( REsampling MultilabEl datasets by Decoupling highly

mbAlanced Labels ) algorithm. It works by decoupling imbalanced

http://dx.doi.org/10.1016/j.neucom.2017.01.118
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abels, as will be further detailed, and its effectiveness on its own,

s long as it is applied to MLDs having a certain concurrence level,

as been already proven. Considering that REMEDIAL separates

ajority and minority labels in independent samples, it is reason-

ble to expect that resampling methods would be able to better

alance the labels distribution. 

Our starting hypothesis is that REMEDIAL can improve the be-

avior of standard multilabel resampling methods, performing a

rior label decoupling where needed. Founded on this hypothe-

is, the goal in this work is to hybridize REMEDIAL with some

f the resampling methods already described in the literature,

iming to improve current imbalanced multilabel learning results.

EMEDIAL-HwR ( REMEDIAL Hybridization with Resampling ) is the

roposed procedure to achieve this goal. Our premise is that over-

ampling algorithms would be able to perform a better work, gen-

rating more new instances from existing ones having only minor-

ty labels, instead of a mixture of minority and majority ones. In

he same way, undersampling methods should be capable of re-

oving instances containing only majority labels, avoiding the in-

ormation loss which implies deleting samples with label concur-

ence. 

The purpose of this study can be summarized into two main

bjectives: 

• First, determine if the hybridization of REMEDIAL with a resam-

pling algorithm could produce an improvement in classification

results. For doing so, three MLCs will be used to process a com-

mon set of ten MLDs in two versions, one preprocessed with

the resampling methods on their own and another one also

with their respective hybrid versions. 

• Second, analyze the potential interactions between the resam-

pling methods, the MLCs and the MLDs’ traits. This way, a

group of rules about when these hybrid versions would be use-

ful could be drawn. 

We propose three hybrid methods named REMEDIAL-HwR-ROS,

EMEDIAL-HwR-HUS, and REMEDIAL-HwR-SMT, based on as many

esampling algorithms, specifically ML-ROS [15] , MLeNN [18] and

LSMOTE [19] . All of them will be further detailed, and their be-

avior will be tested through an extensive experimentation, in-

luding ten popular MLDs, three disparate MLC algorithms and

ve distinct evaluation metrics. As will be shown, when coupled

ith oversampling and MLC transformation techniques the pro-

osed method is able to greatly improve classification results. This

ffectiveness is obtained with MLDs having a high concurrence of

mbalanced labels. 

The remainder of this paper is organized into the following sec-

ions. In Section 2 the multilabel classification task is introduced.

ection 3 provides the specific details related to imbalanced learn-

ng in this field. In Section 4 the proposed hybridization is de-

cribed. The conducted experimentation, results and analysis are

rovided in Section 5 . Lastly, Section 6 state the final conclusions. 

. Background 

In this section the multilabel classification task is briefly intro-

uced and put into context. The best well-known approaches are

ummarized, and some characterization and evaluation metrics are

ntroduced. 

Multilabel learning [3–6] is currently a very active field. The

echniques for multilabel classification have been applied to text

ategorization [22] , image annotation [23] , tag suggestion [8] for

uestion answering forums, and disease diagnosis in children [7] ,

mong others tasks. All these problems have a common character-

stic, each one of the data patterns is linked to several labels at

nce, instead of only one class as in standard classification. 
.1. Multilabel characterization metrics 

Multilabel data have specific traits not found in standard

atasets, hence some specific characterization metrics are needed

o measure these attributes. 

There is a global set of labels L , containing all k labels used in

he D . D being an MLD, D i would be its i-th instance, and Y i ⊆ L
he subset of labels (labelset) which are relevant to that instance.

he role of any MLC is to provide Z i ⊆ L with the labels predicted

or new instances, with the goal of being as close as possible to

 i = Y i . 

Since each instance in an MLD is associated only to a subset of

 , some metrics have been defined to assess the degree of multil-

belness of MLDs. The most common ones are label cardinality, i.e.

ard (1) , and label density, i.e. Dens (2) . 

ard ( D ) = 

1 

n 

n ∑ 

i =1 

| Y i | (1) 

ens ( D ) = 

1 

k 

1 

n 

n ∑ 

i =1 

| Y i | (2) 

TCS (Theoretical Complexity Score) is a metric (3) introduced

n [38] as a way of assessing the complexity of MLDs, f being the

umber of input features, k the number of labels and ls the num-

er of distinct labelsets. The higher the TCS the more complex the

LD. 

CS (D ) = log ( f × k × ls ) (3)

.2. MLC approaches 

Classification of multilabel data is usually tackled by means of

ata transformation or method adaptation techniques. These are

he two common approaches followed by most proposals. The for-

er aims to transform the original multilabel task into one or

ore standard classification tasks, while the latter intents to adapt

he standard classification models to make them able to work na-

ively with multilabel data. 

The two best known data transformation methods are BR ( Bi-

ary Relevance ) [24] and LP ( Label Powerset ) [25] . BR produces a

et of binary datasets from the original MLD. Then, each binary

ataset is processed by a standard classifier. Eventually, the indi-

idual predictions are merged [26] to obtain the subset of labels

elevant to each test instance. LP takes each possible label com-

ination as class identifier, transforming the original MLD into a

ulticlass dataset. After using it to train a standard classifier, the

redicted classes are back transformed to subsets of labels. Both

R and LP are the foundation for many multilabel ensemble-based

ethods. 

Regarding the second mentioned approach, MLC algorithms

ased on many of the standard classification methods have been

roposed in the literature. Among them, there are MLC adapta-

ions of the C4.5 tree induction algorithm [27] , instance-based clas-

ifiers such as ML-kNN [28] , SVM adaptations as the one proposed

n [29] , multilabel neural networks [30] , etc. An extensive review

n multilabel classification techniques is provided in [5] . The fol-

owing three algorithms have been used in the present study. 

• BR: Binary Relevance [24] is the most popular transformation

method for multilabel data. As explained before, it trains an in-

dependent binary classifier for each label, then joins the indi-

vidual predictions to obtain the final labelset. Despite its appar-

ent simplicity, BR is usually among the best performers. Above

all, BR is the foundation of many other MLC algorithms, includ-

ing several ensemble-based solutions such as CC/ECC ( Classifier

Chains/Ensemble of Classifier Chains ) [39] , RPC ( Ranking by Pair-

wise Comparison ) [40] and CLR ( Calibrated Label Ranking ) [41] .
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Therefore, the analysis of results obtained with BR could be ex-

trapolated to many other MLC proposals to a certain extent. 

• LP: Label Powerset [25] is also a straightforward way of facing

multilabel classification, simply by taking each label combina-

tion as an individual class identifier. This approach has been

also used as a starting point for some other MLC algorithms,

including PS ( Pruned Sets ) [42] , EPS ( Ensemble of Pruned Sets )

[43] , HOMER ( Hierarchy of Multilabel Classifiers ) [44] and RAkEL

( Random k-Labelsets ) [45] , among others. Thus, the conclusions

drawn from LP could also be applicable to all these proposals. 

• ML-kNN: This instance-based classification algorithm was pro-

posed in [28] , and it has been the foundation for other more

advanced classifiers, such as IBLR-ML [46] . Essentially, ML-kNN

computes the a priori probabilities for each label, and uses this

information later, when a test sample arrives, to calculate the

conditional probabilities and thus obtain the predicted labelset.

It is included in the experimentation by the same reasons given

above, it is a simple method and have influenced many others. 

2.3. Multilabel performance assessment metrics 

Aiming to assess the performance of multilabel classifiers, more

than twenty specific evaluation metrics have been defined in the

literature. These can be grouped into several categories, depend-

ing on the way they analyze the classifier output. As stated in [4] ,

there are label-based and example-based metrics, bipartition-based

and ranking-based metrics, etc. Below five of the most common

used are described. 

• Hamming loss: It is the most popular multilabel evaluation met-

ric. It counts the number of misclassifications, whether they

are false positives or false negatives, and then averages by the

amount of instances and labels. 

• Ranking loss: It measures the proportion of times in which a

non-relevant label is ranked above a true relevant one, so the

lower is the value the better will be performing the classifier. 

• Precision: It is one of the most usual evaluation metrics in stan-

dard classification. It indicates the proportion of predicted pos-

itives which are truly positives, so the higher the precision the

better will be performing the classifier. 

• F-measure: Precision accounts as errors only false positives, so

it is usual to include some other metric which also considers

false negatives. F-measure is the harmonic mean of Precision

and Recall (6) , being this last metric an indicator of the number

of false positives. Therefore, F-measure offers a broader evalu-

ation of the classifiers’ performance than Precision or Recall in

their own. 

• AUC: Lastly, the Area Under the ROC Curve is among the most

powerful metrics when it comes to assess the performance of a

classifier. It evaluates the true positive rate vs the false positive

rate, being a rather strict measurement of the results. 

In these equations n stands for the number of samples, k for the

number of labels, Y i is the predicted labelset, Z i the true labelset,

� denotes the symmetric difference, and rank ( X i , l ) is a function

that returns the confidence degree for the label l in the prediction

Z i provided by the classifier for the instance X i . Additional details

about the datasets, the MLC algorithms and these metrics, includ-

ing their location into the multilabel performance metrics taxon-

omy, can be found in [4] . 

HammingLoss = 

1 

n 

1 

k 

n ∑ 

i =1 

| Y i �Z i | (4)

P recision = 

1 

n 

n ∑ 

i =1 

| Y i ∩ Z i | 
| Z i | (5)
 

ecall = 

1 

n 

n ∑ 

i =1 

| Y i ∩ Z i | 
| Y i | (6)

-Measure = 2 ∗ P recision ∗ Recall 

P recision + Recall 
. (7)

 ankingLoss = 

1 

n 

n ∑ 

i =1 

1 

| Y i | . | Y i | 
| y a , y b : rank (x i , y a ) 

> rank (x i , y b ) , (y a , y b ) ∈ Y i × Y i | (8)

UC = 

|{ x a , x b , y a , y b : rank (x a , y a ) ≥ rank (x b , y b ) , (x a , y a ) ∈ S + , (x b , y b ) ∈ S −}| 
| S + | . | S −| , 

S + = { (x i , y ) | y ∈ Y i } , S − = { (x i , y ) | y / ∈ Y i } (9)

. Learning from imbalanced MLDs 

The goal in this section is to describe the obstacles while deal-

ng with imbalanced MLDs, as well the ways they have been faced

ntil now. 

The learning from imbalanced data is a deeply studied prob-

em in standard classification. As stated in [13] , it has been mainly

onfronted trough data resampling, classifier adaptation and cost-

ensitive techniques. When it comes to classify imbalanced MLDs,

side from data resampling [15,17–19,31] and classifier adaptation

32–34] the ensemble-based approach has been also explored [35] .

An imbalanced MLD presents large differences among the la-

els distributions, so that some of them are very frequent (major-

ty labels) while other ones are quite rare (minority ones). To as-

ess these differences the IRLbl (10) and MeanIR (11) metrics were

roposed in [15] . The symbol �� denotes de Iverson bracket, which

eturns 1 if the expression inside it is true or 0 otherwise. The IRLbl

s evaluated for each label in L , and provides an individual imbal-

nce level. The global imbalance or MeanIR is obtained by averag-

ng the IRLbl for all labels. 

RLbl(l) = 

max 
l ′ ∈L 

(∑ | D | 
i =1 

� l ′ ∈ Y i � 

)
∑ | D | 

i =1 
� l ∈ Y i � 

. (10)

eanIR = 

1 

|L| 
∑ 

l∈L 
IRLbl(l) . (11)

Some of the resampling methods adapted to deal with mul-

ilabel data have been random undersampling and oversampling,

euristic undersampling, and synthetic instance generation. Several

f these proposals where recently compared in [19] . The following

lgorithms are mong the best performers: 

• ML-ROS: It was introduced in [15] to balance label distribu-

tion through random oversampling. As it can be observed in

Algorithm 1 , it considers the presence of several minority la-

bels, randomly looks for instances associated to them and gen-

erates clones of these instances. As can be seen in Algorithm 1 ,

the amount of clones created by the method is set as a percent-

age relative to the total number of samples in the MLD. 

• MLeNN: Presented in [18] , it is an undersampling algorithm

based on the well-known ENN ( Edited Nearest Neighbor ) rule.

Its pseudo-code is provided in Algorithm 2 . Those samples con-

taining only majority labels and whose labelset is in discor-

dance with that of their neighbors are removed. 

• MLSMOTE: It was proposed in [19] . This algorithm is founded on

the popular SMOTE ( Synthetic Minority Over-sampling Technique )

algorithm. As ML-ROS it considers several minority labels, in-

stead of only one as the original SMOTE. Once the instances in

which these labels appear have been found, new instances are

generated with synthetic attributes and also synthetic labelsets,
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Algorithm 1 ML-ROS algorithm’s pseudo-code. 

Inputs : < Dataset > D , < Percentage > P 

Outputs : Preprocessed dataset 

1: sampl esT oCl one ← | D | / 100 ∗ P � P% size increment 

2: L ← labelsInDataset( D ) � Obtain the full set of labels 

3: MeanIR ← calculateMeanIR( D, L ) 

4: � Create a set of Bags containing minority labels samples 

5: Bags ← ∅ 
6: for each label in L do 

7: IRLbl label ← calculateIRperLabel( D, l abel ) 

8: if IRLbl label > MeanIR then 

9: minorityBag label ← getInstancesOfLabel( l abel ) 

10: Bags ← Bags ∪ minorityBag label 

11: end if 

12: end for 

13: while sampl esT oCl one > 0 do � Instances cloning loop 

14: � Clone a random sample from each minority bag 

15: for each minorityBag label in minorityBag do 

16: x ← random( 1 , | minorityBag label | ) 
17: D ← D ∪ cloneSample( minorityBag label , x ) 

18: if IRLbl label < = MeanIR then 

19: � Exclude from cloning 

20: Bags → Bags − minorityBag label 

21: end if 

22: - - sampl esT oCl one 

23: end for 

24: end while 

25: return D 

Algorithm 2 MLeNN algorithm pseudo-code. 

Inputs : < Dataset > D , < Threshold > HT , 

< NumNeighbors > NN 

Outputs : Preprocessed dataset 

1: L ← labelsInDataset( D ) � Obtain the full set of labels 

2: for each sample in D do 

3: for each label in L do 

4: IRLbl label ← calculateIRperLabel( D, l abel ) 

5: if IRLbl label > MeanIR then 

6: � Preserve instance with minority labels 

7: Jump to next sample 

8: end if 

9: end for 

10: numDifferences ← 0 

11: for each neighbor in nearestNNs( sample , NN) do 

12: if HammingDist( sample , neighbor) > HT then 

13: numDifferences ← numDifferences +1 

14: end if 

15: end for 

16: if numDifferences ≥NN/ 2 then 

17: markForRemoving( sample ) 

18: end if 

19: end for 

20: deleteAllMarkedSamples( D ) 

21: return D 

 

 

 

 

 

 

Algorithm 3 MLSMOTE algorithm’s pseudo-code. 

Inputs : < Dataset > D , < NumNeighbors > k 

Outputs : Preprocessed dataset 

1: L ← labelsInDataset( D ) � Full set of labels 

2: MeanIR ← calculateMeanIR( D, L ) 

3: for each label in L do 

4: IRLbl label ← calculateIRperLabel( D, l abel ) 

5: if IRLbl label > MeanIR then 

6: � Bags of minority labels samples 

7: minBag ← getAllInstancesOfLabel( label ) 

8: for each sample in minBag do 

9: distances ← calcDistance( sample , minBag) 

10: sortSmallerToLargest( distances ) 

11: � Neighbor set selection 

12: neighbors ← getHeadItems( distances , k ) 

13: refNeigh ← getRandNeighbor( neighbors ) 

14: � Feature set and labelset generation 

15: synthSample ← newSample( sample , 

16: refNeigh , neighbors ) 

17: D = D + synthSample 

18: end for 

19: end if 

20: end for 

21: return D 

22: function newSample ( sample , refNeigh , neighbors ) 

23: synthSample ← new Sample � New empty instance 

24: � Feature set assignment 

25: for each feat in synthSample do 

26: if typeOf( feat) is numeric then 

27: diff ← refNeigh.feat - sample.feat 

28: offset ← diff * uniform(0,1) 

29: value ← sample.feat + offset 

30: else 

31: value ← mostFreqVal( neighbors , feat) 

32: end if 

33: syntSmpl.feat ← value 

34: end for 

35: � Label set assignment 

36: lblCounts ← counts(sample.labels) + 

37: counts(neighbors.labels) 

38: labels ← lblCounts > (k+1) / 2 

39: synthSample.labels ← labels 

40: return synthSample 

41: end function 
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1 Visualizing all label interactions in an MLD is, in some cases, almost impossible 

due to the large number of labels. For that reason, only the most frequent labels 

and the rarest ones for each MLD are represented in these plots. High resolution 

versions of these plots can be generated using the mldr R package [36] . 
both produced from the information of their nearest neighbors.

As can be observed in Algorithm 3 (lines 5–7), MLSMOTE only

takes as seeds the instances in which some minority label ap-

pears. Then, their nearest neighbors are located. One of them

is randomly picked to produce the synthetic set of input at-

tributes. Lastly, all of them serve as reference to generate the
synthetic labelset. Additional details about MLSMOTE imple-

mentation can be found in [19] . 

.1. Concurrence among imbalanced labels 

Usually, each instance in an MLD has two or more labels, and it

s not rare that some of them are very common ones while others

re minority labels. This fact can be depicted using an interaction

lot 1 as the ones shown in Fig. 1 . In addition, the level of concur-

ence between common and rare labels can be assessed through

he SCUMBLE metric [20] , defined in (12) . This metric provides a

imple to understand concurrence indicator, whose values will be
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Fig. 1. Concurrence among minority and majority labels in two MLDs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4 REMEDIAL algorithm’s pseudo-code. 

Inputs : < Dataset > D , < Labels > L 

Outputs : Preprocessed dataset 

1: � Calculate imbalance levels 

2: IRLbl l ← calculateIRLbl( l in L ) 

3: IRMean ← IRLbl 

4: � Calculate SCUMBLE 

5: SCUMBLEIns i ← calculateSCUMBLE( D i in D ) 

6: SCUMBLE ← SCUMBLEIns 

7: for each instance i in D do 

8: if SCUMBLEIns i > SCUMBLE then 

9: D 

′ 
i 
← D i � Clone the affected instance 

10: � Maintain minority labels 

11: D i [ l abel s IRLbl < = IRMean ] ← 0 

12: � Maintain majority labels 

13: D 

′ 
i 
[ l abel s IRLbl > IRMean ] ← 0 

14: D ← D + D 

′ 
i 

15: end if 

16: end for 

17: return D 
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in the [0, 1] range. The higher the value the more instances con-

taining minority and majority labels exist in the MLD. 

SCUMBLE ( D ) = 

1 

n 

n ∑ 

i =1 

SCUMBLE ins ( i ) (12)

SCUMBLE ins ( i ) = 1 − 1 

IRLbl i 

( ∏ 

l∈ L 
IRLbl il 

) ( 1 /k ) 

(13)

The left plot of the aforementioned figure corresponds to an

MLD with a high level of concurrence between imbalanced labels,

denoted by a SCUMBLE above of 0.1. As can be seen, the minority

labels (on the right side) are entirely linked with some majority

labels. In some MLDs the concurrence between majority and mi-

nority labels is low, as shown in the right plot of Fig. 1 . In these

cases the level of SCUMBLE is below 0.1, and as can be seen there

are many arcs between minority labels, denoting interactions be-

tween them but not with the majority ones. 

The aforementioned multilabel resampling algorithms will not

have an easy work while dealing with MLDs which have a high

SCUMBLE . Undersampling algorithms can produce a loss of essen-

tial information, as the samples selected for removal because ma-

jority labels appear in them can also contain minority labels. In

the same way, oversampling algorithms limited to cloning the la-

belsets, such as the proposals in [15,17] , can be also increasing the

presence of majority labels. These facts were empirically demon-

strated in [20] . 

The imbalanced labels concurrence in MLDs can be alleviated

through a label decoupling strategy, as described in [21] . The pro-

posed algorithm is called REMEDIAL and its pseudo-code is shown

in Algorithm 4 . What it does is looking for instances having a high

SCUMBLE level, i.e. it contains both majority and minority labels.

The decoupling of these data samples consists in cloning them, ob-

taining a couple of instances in which one will be associated to the

majority labels and the other one to the minority labels. This way

the level of concurrence is reduced. 
. REMEDIAL-HwR: label decoupling and data resampling 

ybridization 

In this section the procedure to hybridize label decoupling with

ata resampling methods is presented, and three hybrid versions

re detailed. These will be empirically tested in the following sec-

ion. 

As stated in [21] , REMEDIAL is able to improve classification

esults on its own, as far as it is applied to MLDs having a high

CUMBLE value. In the following, how this technique can be

ombined with standard resampling methods is analyzed. For

oing so, an adapted version of REMEDIAL is going to be used.

n the original version of REMEDIAL a fixed threshold is used to

ecide which instances are decoupled. This threshold is set to the

verage SCUMBLE value. Our adapted version takes the threshold



F. Charte et al. / Neurocomputing 326–327 (2019) 110–122 115 

Fig. 2. Structure of the proposed REMEDIAL-HwR method. 
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s another input parameter, so that different cut points can be

tudied. In particular, the percentiles .25, .37, .50, .62, and .75 will

e used, percentile .50 being equivalent to the default threshold

n REMEDIAL. The goal is to study if there is a certain optimum

hreshold for REMEDIAL. The block structure of this hybridization

s the one shown in Fig. 2 . 

.1. REMEDIAL-HwR-ROS: REMEDIAL hybridizing with random 

versampling 

As was experimentally demonstrated in [15] , random oversam-

ling can deliver improvements in multilabel classification perfor-

ance. The ML-ROS algorithm in particular is able to balance la-

el distribution following a relatively simple approach. It looks for

nstances associated to some of the minority labels, then gener-

tes clones from these instances. Although ML-ROS performs well

n many scenarios, it would be not able to balance the label distri-

ution of MLDs having a high imbalanced labels concurrence. Due

o the joint appearance of minority and majority labels, most of

he samples picked by the method would be also associated to fre-

uent labels and, therefore, the clones will include both types of

abels. 

The proposed hybrid method will firstly decouple imbalanced

abels, then will look for instances linked to minority labels and

ill produce clones from them. These new samples will increase

he frequency of rare labels without also implying a grow in those

inked to majority labels. As a result, the MLDs would have a more

alanced label distribution and would be easier to process by MLC

lgorithms. 

.2. REMEDIAL-HwR-HUS: REMEDIAL hybridizing with heuristic 

ndersampling 

Undersampling methods rely on removing instances in which

ajority labels appear. It is something that must be done with ex-

reme care. Since each sample in an MLD contains several labels,

hoosing those having majority labels could also affect the minor-

ty ones. For this reason, MLeNN [18] starts by excluding all the

amples in which some minority labels appear. Then, the remain-

er instances are processed one by one comparing their labelsets

ith those of their nearest neighbors. The samples significantly

ifferent from more than half of their neighbors are removed from

he MLD. 

Since MLeNN excludes from processing the instances linked to

inority labels, which are potentially also associated to majority

nes, there will be a certain amount of samples that never will

e evaluated, whether they are similar to their neighbors or not.

he hybrid version, by firstly applying the decoupling process, will
ave more instances acting as candidates to be removed. All the

atterns that previously contained minority labels, but now are ex-

lusively associated to majority ones, will be processed by MLeNN

nstead of being oversighted. 

.3. REMEDIAL-HwR-SMT: REMEDIAL hybridizing with synthetic 

nstance generation 

In [19] an adaptation of SMOTE to work with multilabel data,

alled MLSMOTE, was proposed. Unlike SMOTE, MLSMOTE consid-

rs the presence of a set of minority labels, instead of only one

lass. In addition to the synthetic attributes, MLSMOTE also pro-

uces a synthetic labelset for the new instances. The set of labels

s obtained from a ranking of labels present in the instance being

rocessed and its nearest neighbors. 

The decoupling procedure, applied before the minority samples

re selected, will influence the labelset of the chosen sample and

otentially also those of its neighbors. Thus, the synthetic instance

enerated by MLSMOTE will be assigned a slightly different set

f labels, sometimes without introducing the majority labels that

ere present in the sample before decoupling them. The conse-

uence should be a more balanced label distribution, able to in-

uce a better classification model than the base configuration. 

. Experimentation 

In this section the three hybrid preprocessing methods just de-

cribed are tested, and they are compared against the original ver-

ions of each resampling method. First, the experimental test bed

s detailed. Then, the obtained results are provided. Lastly, these

esults are discussed and analyzed. 

.1. Experimental framework 

In order to check how the proposed hybridization influences the

ehavior of each resampling method ten MLDs from disparate ap-

lication fields has been used. All of them can be obtained from

he R Ultimate Multilabel Repository [37] , along with their respec-

ive references. Their fundamental traits are provided in Table 1 .

he meaning of each column, from left to right, is the following: 

• Dataset: The usual name the MLD is known in the literature. 

• Inst.: Number of data instances in the MLD. 

• Attr.: Number of input attributes. 

• Labels: Total number of labels. 

• LSet: Number of distinct label combinations in the MLD. 

• Card: Label cardinality. 

• Dens: Label density. 

• MeanIR: Average imbalance ratio. 
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Table 1 

Main characteristics of the MLDs used in the experimental study. 

Dataset Inst. Attr. Labels LSet Card Dens MeanIR SCUMBLE TCS 

yeast 2417 103 14 198 4.237 0.303 7.197 0.104 12.562 

cal500 502 68 174 502 26.044 0.150 20.578 0.337 15.597 

medical 978 1449 45 94 1.245 0.028 89.501 0.047 15.629 

tmc2007 28,596 49060 22 1341 2.158 0.098 15.157 0.175 16.372 

enron 1702 1001 53 753 3.378 0.064 73.953 0.303 17.503 

mediamill 43,907 120 101 6555 4.376 0.043 256.405 0.355 18.191 

chess 1675 585 227 1078 2.411 0.011 85.790 0.262 18.779 

corel16k 13,766 500 153 4803 2.859 0.019 34.155 0.273 19.722 

corel5k 50 0 0 499 374 3175 3.522 0.009 189.568 0.394 20.200 

delicious 16,105 500 983 15,806 19.017 0.019 71.052 0.532 22.773 
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• SCUMBLE: Level of imbalanced labels concurrence. 

• TCS: Theoretical Complexity Score. 

The MLDs are shown in the table ordered per their TCS value,

from the simplest one to the most complex. Theoretically, the

higher is the value the harder will be for the classifier to cor-

rectly predict labelsets for new instances. These datasets were par-

titioned into 10 folds, following the stratified partitioning strategy

described in [38] , and the usual cross validation scheme was used

to collect the results. The training partitions of each dataset were

preprocessed using six configurations. The first one applies the

original resampling method, ML-ROS, MLeNN or MLSMOTE. The

other five correspond to the respective hybrid version with the dif-

ferent thresholds for REMEDIAL previously enumerated. So, there

will be 18 distinct configurations for each MLD. 

As for the classifiers used to process the aforementioned MLD

configurations, the goal is to choose some of those that have had

a big influence in the MLC field. Due to this reason, BR [24] , LP

[25] and ML-kNN [28] were chosen. The well-known C4.5 tree in-

duction algorithm was used as underlying classifier for BR and LP.

Default parameters were used in all cases, including the number

of neighbors for ML-kNN which is set to 10. The implementation

of these three algorithms can be found in MULAN [47] . This was

the software tool used to conduct the described experiments. 

The predictions given by the three MLC methods are going to

be assessed with several multilabel evaluation metrics, since each

one of them provides a different perspective of the classifier per-

formance. Hamming Loss (4) and Ranking Loss (8) are among the

most usual multilabel performance metrics, included in most stud-

ies. Both are loss metrics, so the goal must be to minimize them.

Precision (5) and F-measure (7) are common evaluation metrics in

classification problems, as it is AUC (9) ( Area Under the ROC Curve ).

The micro-averaging approach has been used, so the results are av-

eraged assigning equal weight to every instance in the MLD. The

three of them are performance metrics, so the goal is to maximize

them. 

The results obtained from each configuration run have been col-

lected into five tables, Tables 2 –6 , one for each evaluation metric.

The title of the table indicates the name of the metric, as well as

if it is a measurement to be minimized ( ↓ ) or maximized ( ↑ ). 

All tables have the same structure. The three resampling algo-

rithms appear as columns, with each one of their six configura-

tions as subcolumns. The column dubbed as Base corresponds to

the results produced by the resampling method in its own, while

the columns entitled H nn come from the hybrid version with the

five thresholds previously enumerated (see diagram in Fig. 2 ), be-

ing nn the corresponding threshold. The datasets, grouped by clas-

sifier, appear as rows. Therefore, nine subgroups can be easily iden-

tified inside each table, according to preprocessing and classifica-

tion algorithms. 

The configuration with the best performance for each MLD in-

side each subgroup has been highlighted in bold. This way it is
asy to check if for a given case the hybridization has been able

o improve the base resampling results or not. If there are several

onfigurations reaching the best value, all of them are highlighted.

f there is a tie for all configurations, none is emphasized. It must

e noted that in many cases all hybrid configurations improve the

ase result, but only the best performer is pointed out. 

For certain configurations, the MULAN framework [47] was not

ble to provide some evaluation metrics. These cases appear as

ashes in the tables. 

.2. Analysis of results 

Here, the obtained results are going to be analyzed according to

everal criteria. Firstly, the focus will be in the evaluation metric,

hen in the resampling method, further in the classifier, and lastly

n individual MLDs. 

• Hamming loss: Looking at Table 2 it can be verified that the hy-

brid versions are able to improve results for the BR and LP clas-

sifiers, having between 8 and 6 best cases out of 10. There is

not a clear optimum threshold, although for LP the H1 configu-

ration, which corresponds to the lower cut point, gathers more

best values than the others. The scenario for ML-kNN is com-

pletely different, since the base resampling achieves at least 6

out of 10 best performances. 

• Ranking loss: By examining the Table 3 is easy to extract some

clear conclusions. The hybrid version achieves most of the best

results when paired with the BR classifier. As many as 8 or

9 out of 10 cases have improved the base result. On the con-

trary, the hybridization does not benefit the MLeNN resampling

method, nor the behavior of the ML-kNN classifier. The situa-

tion with the LP classifier is in between, with half of the hybrid

configurations improving and the other half worsening. 

• Precision: From Table 4 two main facts can be drawn. That for

nearly all cases hybrid configurations achieve most of the best

results is the first one. In some cases, such as BR and ML-kNN,

almost all best values correspond to the hybrid versions of ML-

ROS and MLSMOTE. The second, that the hybridization is not

able to improve the behavior of MLeNN. 

• F-measure: The F-measure values collected in Table 5 show a

scenario quite similar for all configurations. In most of them,

hybrid versions of the resampling methods achieve more best

results, including MLeNN. 

• AUC: As can be seen in Table 6 , the distribution of best values

is quite similar to that of the Ranking Loss ( Table 3 ) metric.

The proposed hybridization works best when applied to ML-

ROS and MLSMOTE and combined with BR and LP. On the other

side, it does not benefit the work of MLeNN, and it does not

seem to mix well with the ML-kNN classifier. 

From a global perspective, Hamming Loss, Precision and F-

easure provide a close evaluation of the results, with the hybrid

esampling achieving between 60% and 70% of best values. By con-
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Table 2 

Hamming loss ( ↓ ). 

Table 3 

Ranking loss ( ↓ ). 
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Table 4 

Precision ( ↑ ). 

Table 5 

F-Measure ( ↑ ). 
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Table 6 

AUC ( ↑ ). 
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rast, the assessment offered by Ranking Loss and AUC indicates

hat the hybridization improves results in slightly less than 50%

f the cases. Nevertheless, aside from this overall view what it is

nteresting to scrutinize is how these best values are distributed

ccording to resampling and classification methods. 

Focusing in the resampling methods, the further consequences

an be drawn: 

• ML-ROS and MLSMOTE: As have been mentioned, both algo-

rithms are, in general, able to benefit from the hibridization,

as can be stated from the tables of results observation. Work-

ing over decoupled data samples, ML-ROS and MLSMOTE can

gather instances associated to minority labels that do not in-

clude also majority ones, being capable of producing more sam-

ples exclusively linked to minority labels. 

• MLeNN: As we have highlighted, MLeNN is not benefiting of the

label decoupling process. The reason to this behavior can be de-

ducted by inspecting the inner workings of MLeNN. This algo-

rithm compares the labelset of the selected instance with those

of their nearest neighbors, removing the pattern if there is a

significant difference with more than half of these neighbors.

Since the decoupling process locates two instances with disjoint

labelsets into exactly the same position (they share the feature

set), it is effectively increasing the likelihood of removing the

majority sample just produced by the split. It seems that the

loss of information generated by this fact is enough to deterio-

rate the classifier performance. 

Regarding the behavior of MLC algorithms, the hybridization

roduces the following effects: 

• BR and LP: The results produced by BR and LP classifiers im-

prove the ones of the base resampling in a large portion of
the studied cases. In general, the BR approach seems to be

the most benefited, with about an 80% of hybrid configura-

tions achieving best results after taking into account ML-ROS

and MLSMOTE only. Considering that BR trains an independent

binary classifier for each label, by splitting minority and ma-

jority labels in separate instances the performance of these in-

dividual classifiers improves. The influence on the LP classifier

comes from the fact that by decoupling imbalanced labels the

global amount of label combinations is also reduced. Thus, the

base multiclass classifier has to deal with less classes. 

• ML-kNN: If the interest is in getting a good Precision and F-

Measure, the results of hybrid versions with ML-kNN are quite

remarkable. However, the results with AUC, Ranking Loss, and

partially also with Hamming Loss allow to infer that this is not

a good mixture, independently of the resampling being applied.

This behavior could be due to similar reasons to that explained

above for MLeNN. ML-kNN starts by computing a priori prob-

abilities for each label, whose result should not be affected by

the decoupling process. However, each time a new sample is to

be classified the algorithm has to find their nearest neighbors.

Is in this operation when the problem might arise, since there

will be two instances located at the same distance but with a

disjoint set of labels. As a result, the computing of the a poste-

riori probabilities of ML-kNN will be affected. 

Lastly, the results are briefly analyzed regarding the goodness

f the proposed hybridization for the selected MLDs. Some conse-

uences can be also deduced. 

• Six out of the ten used MLDs, cal500, chess, corel16k, corel5k,

delicious, and enron, usually improve the results after the pro-

posed hybridization has been applied. These MLDs have the

proper traits to benefit from the label decoupling, since they
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have a significant level of label concurrence as their SCUMBLE

values denote, and also from the resampling, as all of them are

imbalanced datasets. 

• The results for the datasets medical, tmc2007 and yeast are

usually obtained by the original preprocessing, instead of with

one of the hybrid configurations. By examining the traits of

these datasets (see Table 1 ), that they have the lowest SCUM-

BLE values can be stated. In fact, these values are below or

marginally above the threshold indicated in [21] as recommen-

dation to apply REMEDIAL. A low SCUMBLE value denotes that

the MLD does not suffer from imbalanced labels concurrence,

so the REMEDIAL algorithm would have little impact if any.

Therefore, the differences in classification performance tend to

be quite slight, mostly due to the non-deterministic behavior of

the classifier. 

• Although less frequently than the three prior cases, the medi-

amill MLD also presents the aforementioned demeanor. How-

ever, the case of mediamill is not comparable since it has a

high SCUMBLE value. Notwithstanding, this MLD presents the

highest imbalance level as can be seen in the MeanIR column

of Table 1 . So, it is an MLD inherently hard to learn from, and

sometimes the decoupling does not positively contribute the

training of the classifiers. 

As regards to the threshold level that determines which data

samples are processed by REMEDIAL, in general values in the [0.25,

0.50] interval are producing better results than those above 0.50.

This seems coherent, since the higher is the threshold the fewer

samples will be decoupled. However, taking too many instances

can be also detrimental to the posterior resampling. The best cut

value will be influence by the MLD traits, as well as the chosen

classifier and resampling algorithms. So, it should be adjusted tak-

ing into account all these variables, maybe through an internal

cross validation step aimed to optimize this parameter. 

Some MLC algorithms analyze potential label dependencies in

order to improve the classifier performance. Although these algo-

rithms assume the existence of a certain relationship between la-

bels which often appear together, it is also true that methods such

as BR, which assume a total independence among labels, usually

perform very well. Since REMEDIAL separates labels with a po-

tential relationship, how the decoupling influences the aforemen-

tioned algorithms could be worthwhile. 

5.3. Lessons learnt 

In addition to the discussed classification results, from the

study of interactions between REMEDIAL, resampling methods and

classifiers, a set of clear guidelines on when the use of REMEDIAL-

HwR is beneficial can be extracted: 

• Combining imbalanced labels decoupling with data resampling

is positive if it is applied to MLDs having a high label concur-

rence problem. Otherwise, the effect of the hybrid preprocess-

ings can be negligible or even induce a worsening of the re-

sults. This is a conclusion already argued in [21] . 

• The proposed hybridization improves the efficiency of oversam-

pling algorithms, such as ML-ROS and MLSMOTE, as they will

be able to produce new instances that include only the minor-

ity labels. On the contrary, it should not be used with methods

such as MLeNN, based on locating nearest neighbors with high

differences in the labelsets to remove them. 

• The MLDs preprocessed with hybrid resampling methods im-

prove the training of BR and LP classifiers, and it is reasonable

to assume that this improvement would be also applicable to

BR-based and LP-based methods. On the other side, classifiers

such as ML-kNN, which are based on nearest neighbor infor-

mation, could degrade their performance. This is due to the fact
that the splitted instances are located exactly in the same posi-

tion. 

• Depending on the selected evaluation metric, the obtained view

about how classifiers perform can drastically change. The hy-

bridization should be chosen if boosting Precision or F-Measure

is the goal, no matter which resample or classifier it is tied

to. If the objective is to maximize AUC or minimize Ranking

Loss, the decoupling should only be combined with oversam-

pling and BR/LP classifiers. 

Summarizing, REMEDIAL-HwR has a positive impact in classi-

cation results as long as certain conditions are met. Firstly, the

ecoupling should only be applied to MLDs having a high level of

mbalanced labels concurrence. Second, that the proposed method-

logy is able to improve classification performance mostly when

aired with oversampling techniques and BR and LP algorithms. 

. Conclusions 

In this work, we have proposed REMEDIAL-HwR-ROS,

EMEDIAL-HwR-HUS and REMEDIAL-HwR-SMT, three hybrid

reprocessing methods aimed to tackle imbalanced multilabel

earning. The conducted experimentation has demonstrated their

ffectiveness. 

As can be concluded from the rules obtained from the anal-

sis, REMEDIAL-HwR-ROS and REMEDIAL-HwR-SMT area able to

mprove classification results when paired with MLC algorithms

ased on BR and LP transformations. 

The main obstacle to achieve a more general gain from the pro-

osed hybridization comes from the fact that decoupled instances,

lthough they have separate minority and majority labels and this

elps some resampling methods, are located in the same position

their set of input features does not change). A pair of aspects

ould worth further study: 

• A potential solution for the mentioned problems with MLeNN

and ML-kNN would be enhancing the REMEDIAL algorithm,

thus that after the splitting the resulting instances are relocated

according to their new labelsets. 

• In addition, the threshold to decide when a data sample should

be decoupled or not could be automatically adjusted, for in-

stance through cross validation techniques. 
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