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a b s t r a c t 

Multilabel classification is an emergent data mining task with a broad range of real world applications. 

Learning from imbalanced multilabel data is being deeply studied latterly, and several resampling meth- 

ods have been proposed in the literature. The unequal label distribution in most multilabel datasets, with 

disparate imbalance levels, could be a handicap while learning new classifiers. In addition, this charac- 

teristic challenges many of the existent preprocessing algorithms. Furthermore, the concurrence between 

imbalanced labels can make harder the learning from certain labels. These are what we call difficult la- 

bels. In this work, the problem of difficult labels is deeply analyzed, its influence in multilabel classifiers 

is studied, and a novel way to solve this problem is proposed. Specific metrics to assess this trait in 

multilabel datasets, called SCUMBLE ( Score of ConcUrrence among iMBalanced LabEls ) and SCUMBLELbl , are 

presented along with REMEDIAL ( REsampling MultilabEl datasets by Decoupling highly ImbAlanced Labels ), a 

new algorithm aimed to relax label concurrence. How to deal with this problem using the R mldr package 

is also outlined. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Multilabel classification (MLC) [1,2] models are designed to pre-

ict the subset of labels associated to each instance in a multilabel

ataset (MLD), instead of only one class as traditional classifiers

o. It is a task useful in fields such as automated tag suggestion

3] , protein classification [4] , and object recognition in images [5] ,

mong others. Many different methods have been proposed lately

o accomplish this problem. 

The number of instances in which each label appears is not

omogeneous. In fact, most MLDs show big differences in label

requencies. This peculiarity is known as imbalance [6] , and it

as been profoundly studied in traditional classification. In the

ontext of MLC, several proposals to deal with imbalanced MLDs

7–15] have been made lately. Despite these efforts, there are still

ome aspects regarding imbalanced learning in MLC that would

eed additional analysis. 

Resampling techniques are commonly used in with traditional

non-multilabel) datasets [16] to balance their class distributions,

ence they are an obvious choice to face the same problem with
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LDs. Notwithstanding, the nature of MLDs can be a challenge for

esampling algorithms. In this paper, we will show how a specific

haracteristic of these datasets, the joint presence in the same in-

tance of labels with different frequencies, could prevent the goal

f these algorithms. 

We hypothesized 

1 that this symptom, the concurrence among

mbalanced labels, would influence the resampling algorithms be-

avior. Specifically, the minority labels which jointly appear with

ajority ones would be difficult labels. In order to deal with this

roblem we propose to face it in two phases: 

• Firstly, the concurrence problem has to be assessed. For do-

ing so, two new metrics, named SCUMBLE ( Score of ConcUrrence

among iMBalanced LabEls ) and SCUMBLELbl , designed explicitly

to assess this causality, will be proposed. Its effectiveness will

be experimentally demonstrated. 

• Secondly, an algorithm specifically designed to preprocess MLDs

affected by this problem would be needed. A such method,

called REMEDIAL ( REsampling MultilabEl datasets by Decoupling

highly ImbAlanced Labels ), will be introduced, and its perfor-

mance will be empirically tested. 
1 This paper is an extended version of our previous work [17] from HAIS’14, in- 

luding additional metrics, a deeper analysis, and an algorithm aimed to solve the 

escribed problem. The proposed solutions have been implemented in R, and the 

oftware package containing them is also described. 

http://dx.doi.org/10.1016/j.neucom.2016.08.158
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.08.158&domain=pdf
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The SCUMBLE measure was conceived aiming to know how dif-

ficult would be to work with a certain MLD for resampling algo-

rithms. Its goal is to appraise the concurrence among imbalanced

labels, giving as result a score easily interpretable. This score will

be in the range [0,1]. A low score would denote an MLD with

not much concurrence among imbalanced labels, whereas a high

one would evidence the opposite case. Our hypothesis is that the

lower the score obtained, the better the resampling algorithms

would work. SCUMBLELbl complements the former metric, allowing

to know which labels are more affected by this problem. The less

frequent labels with a high SCUMBLELbl would be specially difficult

cases. 

Once the presence of the concurrence problem has been stated,

the idea of how to deal with it naturally arises. For this reason the

algorithm REMEDIAL, a specific method able to reduce concurrence

among imbalanced labels, is also introduced. REMEDIAL works by

decoupling imbalanced labels through an editing and oversampling

approach. It is a resampling algorithm, since it produces new data

samples. At the same time, it also edits existent instances. How-

ever, it does not change the number of times that each label ap-

pears in the dataset. The details about REMEDIAL and how to use

this algorithm along with the proposed metrics, relying on the

mldr R package [18] , will also be explained. 

The rest of this paper is structured as follows. Section 2 of-

fers a brief introduction to MLC, as well as a description on how

the learning from imbalanced MLDs has been faced. In Section 3 ,

the problem of concurrence among imbalanced labels in MLDs will

be defined, and how to assess this concurrence using the pro-

posed metrics will be explained. The algorithm REMEDIAL is de-

scribed in Section 4 . Section 5 portraits the experimental frame-

work used, as well as the obtained results from experimentation.

Finally, Section 6 will offer the conclusions. Appendix A describes

how to assess the label concurrence level and how to apply the

REMEDIAL algorithm thorough a specific software package devel-

oped by the authors. 

2. Preliminaries 

In this section, a concise introduction to multilabel classifica-

tion is offered, along with a description on how the learning from

imbalanced MLDs has been faced until now. 

2.1. Multilabel classification 

Currently, there are many domains [4,5,19–22] in which each

data pattern is not associated exclusively to one class, but to a

group of them. In this context, the classes are named labels, and

the set of labels that belongs to a data sample is called labelset.

Let D be an MLD, D i the i th instance, and L the full set on labels

on D . The goal of a multilabel classifier is to predict a set Z i ⊆L with

the labelset for D i . 

Multilabel classification has been traditionally faced through

two different approaches [23] . The first one, called data transfor-

mation, aims to produce binary or multiclass datasets from an

MLD, allowing the use of non-MLC algorithms. The second, known

as algorithm adaptation, has the goal of adapting established algo-

rithms to natively work with MLDs. The two most common trans-

formation methods are Binary Relevance (BR) [24] and Label Pow-

erset (LP) [25] . The former produces several binary datasets from

an MLD, usually one for each label or one for each label pair [26] .

The latter transforms the MLD into a multiclass dataset, taking

each labelset as class identifier. Regarding adapted algorithms, the

number of proposals is quite high. There are multilabel KNN classi-

fiers such as ML-kNN [27] , multilabel trees based on C4.5 [28] , and

multilabel ANNs such as [29] , as well as a profusion of algorithms
ased on ensembles of BR and LP classifiers. A recent review on

ultilabel classification algorithms can be found in [2] . 

Thus far, most proposed multilabel characterization metrics are

ocused in assessing the number of labels and labelsets. The most

ommon ones are the total number of labels | L |, label cardinality

 Card ), which is the average number of labels per instance, and la-

el density, obtained as Card /| L |. 

.2. Learning from imbalanced data 

Imbalanced learning is a well-known problem in traditional

lassification [30–33] , having been faced through three main ap-

roaches. First, by way of algorithmic adaptations of existent clas-

ifiers, the imbalance is taken into account in the classification pro-

ess. Second, the preprocessing approach aims to balance class dis-

ributions by way of data resampling, creating (oversampling) or

emoving (undersampling) data samples. Third, cost sensitive clas-

ification is a combination of the two previous approaches. The

ata resampling approach has the advantage of being classifier in-

ependent, and its effectiveness has been proven in many scenar-

os. 

In the MLC field, both the algorithmic adaptation and the data

esampling approaches have been applied. The former is present

n [7,8,11] , while the latter appears in [10,12–15] . There are also

roposals based on the use of ensemble of classifiers, such as [9] . 

When it comes to assessing the imbalance level in MLDs, the

etrics in Eqs. (1) and (2) are proposed in [34] . Let D be an MLD,

 the full set of labels in it, y the label being analyzed, and Y i the

abelset of i th instance in D . In Eq. (1) the symbol �� denotes de

verson bracket, which returns 1 if the expression inside it is true

r 0 otherwise. IRLbl is a measure calculated individually for each

abel. The higher is the IRLbl the larger would be the imbalance,

llowing to know which labels are in minority or majority. MeanIR

s the average IRLbl for an MLD. It is useful to estimate the global

mbalance level. 

RLbl(y) = 

max 
y ′ ∈ L 

(∑ | D | 
i =1 

� y ′ ∈ Y i � 

)
∑ | D | 

i =1 
� y ∈ Y i � 

. (1)

eanIR = 

1 

| L | 
∑ 

y ∈ L 
IRLbl(y) . (2)

Even though the previously cited proposals for facing imbal-

nced learning in MLC achieve some good results, their behavior is

eavily influenced by MLDs characteristics such as the imbalance

evels, measured by means of the previous metrics, or the concur-

ence among imbalanced labels, which will be described later. In

he following we will focus in this topic, specifically in regard to

ata resampling solutions. 

.3. Related work 

In general, resampling methods aimed to work with non-MLDs

an be divided into two categories, oversampling algorithms and

ndersampling algorithms. The former technique produces new

amples with the minority class, while the latter removes instances

inked to the majority class. The way in which the samples to be

emoved or reproduced are chosen can also be grouped into two

ategories, random methods and heuristic methods. Since this kind

f datasets use only one class per instance, the previous techniques

ffectively balance the distribution of classes. However, this is not

lways true when dealing with MLDs. Moreover, most MLDs have

ore than one minority and one majority label. 
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The preceding approaches have been migrated to the multilabel

cenario at some extent, giving as result proposals such as the fol-

owing: 

• Random undersampling : Two multilabel random undersampling

algorithms are presented in [12] , one of them based on the LP

transformation (LP-RUS) and another one on the IRLbl measure

(ML-RUS). The latter determines what labels are in minority,

by means of their IRLbl , and avoids removing samples in which

they appear. 

• Random oversampling : The same paper [12] also proposes two

random oversampling algorithms, called LP-ROS and ML-ROS.

The former is based on the LP transformation, while the lat-

ter relies on the IRLbl measure. Both take into account several

minority labels, and generate new instances cloning the original

labelsets. 

• Heuristic undersampling : In [14] a method to undersample MLDs

following the ENN ( Edited Nearest Network ) rule was presented.

The instances are not randomly chosen, as in LP-RUS or ML-

RUS, but carefully selected after analyzing their IRLbl and the

differences with their neighborhood. 

• Heuristic oversampling : The procedure proposed in [13] is based

on the original SMOTE algorithm. First, instances of an MLD

are chosen using different criteria, then the selected samples

are given as input to SMOTE, producing new samples with the

same labelsets. In [15] a more sophisticated approach is pre-

sented, with a multilabel version of SMOTE, called MLSMOTE,

able to produce synthetic samples whose labelsets are gener-

ated from those of the nearest neighbors, instead of cloning

them. 

A major disadvantage in some of these algorithms is that they

lways work over full labelsets, cloning the set of labels in existent

amples or completely removing them. Although this approach can

enefit some MLDs, in other cases the result can be counterpro-

uctive depending on the MLD traits. 

The aforementioned multilabel resampling algorithms will not

ave an easy work while dealing with MLDs which have a high

CUMBLE level. Undersampling algorithms can produce a loss of

ssential information, as the samples selected for removal because

ajority labels appear in them can also contain minority labels. In

he same way, oversampling algorithms limited to cloning the la-

elsets, such as the proposals in [12,13] , can be also increasing the

resence of majority labels. 

. Imbalanced MLDs and resampling algorithms behavior 

Most traditional resampling methods do their job by removing

nstances with the most frequent class, or creating new samples

rom instances associated to the least frequent one. Since each in-

tance can belong to one class only, these actions would effectively

alance the classes frequencies. However, this is not necessarily

rue when working with MLDs. 

.1. Concurrence among imbalanced labels in MLDs 

The instances in a MLD are usually associated simultaneously

o two or more labels. It is entirely possible that one of those la-

els is the minority label, while other is the majority one. In the

ost extreme situation, all the appearances of the minority label

ould be jointly with the majority one, into the same instances.

his will make the minority label specially difficult to classify by

ny MLC algorithm, as most of them tend to be biased to the ma-

ority ones. In practice the scenario would be more complicated, as

ommonly there are more than one minority/majority label in an

LD. Therefore, the potential existence of instances associated to
inority and majority labels at once is very high. This fact is what

e call concurrence among imbalanced labels. 

A multilabel oversampling algorithm that clones minority la-

els, such as the proposed in [12] , or that generates new samples

rom existing ones preserving the labelsets, as is the case in [13] ,

ould be also increasing the number of instances associated to ma-

ority labels. Thus, the imbalance level would be hardly reduced if

here is a high level of concurrence among imbalanced labels. In

he same way, a multilabel undersampling algorithm designed to

emove instances from the majority labels, such as the proposed

n [12] , could inadvertently cause also a loss of samples associated

o the minority ones. In both cases, difficult labels (those which

re in minority and have a high concurrence with majority ones)

ill be the most harmed by the classifier. 

The ineffectiveness of these resampling methods, when they are

sed with certain MLDs, would be noticed once the preprocessing

s applied and the classification results are evaluated. This process

ill need computing power and time. For that reason, it would be

esirable to know in advance the level of concurrence among im-

alanced labels that each MLD suffers, saving these valuable re-

ources. 

.2. Metrics to assess the concurrence level 

The concurrence of labels in an MLD can be visually explored in

ome cases, as shown in Figs. 1 and 2 . Each arc represents a label,

eing the arc’s length proportional to the number of instances in

hich this label is present. The first ( Fig. 1 ) diagram corresponds

o the genbase dataset. At the position of twelve o’clock appears

 label called P750 which is clearly a minority label. All the sam-

les associated to this label also contains P271 , another minority

abel. The same situation can be seen with label P154 . These mi-

ority labels have not necessarily to be difficult labels. By contrast,

n the yeast MLD ( Fig. 2 ) is easy to see that the samples associ-

ted to minority labels, such as Class14 and Class9 , always appear

ogether with one or more majority labels. At first sight, that the

oncurrence between imbalanced labels is higher in yeast than in

enbase, and that the former contains some difficult labels while

he latter does not, could be concluded. However, this visual ex-

loratory technique is not useful with MLDs having more than a

ew dozens labels, because the diagram would be hardly legible. 

Existing metrics previously described (see Section 2.2 ), such as

RLBL and MeanIR , assess the imbalance level of the labels, i.e., the

elative frequency of each label with respect to the most common

ne and the average frequency. However, none of them allows to

now if minority labels appear in their own or jointly with major-

ty ones. The SCUMBLE metric proposed here is aimed to evaluate

his casuistic, that was not considered in the literature until now. 

The SCUMBLE metric aims to quantify the imbalance variance

mong the labels present in each data sample. This metric ( Eq. (4) )

s based on the Atkinson index [35] and the IRLbl measure ( Eq. (1) )

roposed in [34] . The former is an econometric measure directed

o assess social inequalities among individuals in a population. The

atter is the metric that lets us know the imbalance ratio of each

abel in an MLD. The Atkinson index is used to know the diversity

mong people’s earnings, while our objective is to assess the ex-

end to which labels with different imbalance levels appear jointly.

ur first hypothesis is that the higher is the concurrence level the

arder would be the work for resampling algorithms, and therefore

he worse they would perform. 

The Atkinson index is calculated using incomes. We used the

mbalance level of each label instead, taking each instance D i in the

LD D as a population, and the active labels in D i (those which

re relevant to D i and therefore are set to 1) as the individuals.

f the label l is present in the instance i then I RLbl il = I RLbl (l ) ,

therwise I RLbl = 0 . I RLbl stands for the average imbalance level
il i 



42 F. Charte et al. / Neurocomputing 326–327 (2019) 39–53 

Fig. 1. Label concurrence in genbase MLD. 
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of the labels appearing in instance i . The scores for every sample

are averaged, obtaining the final SCUMBLE value. 

SCUMBLE ins ( i ) = 1 − 1 

IRLbl i 

( | L | ∏ 

l=1 

IRLbl il 

) ( 1 / | L | ) 
(3)

SCUMBLE ( D ) = 

1 

| D | 
| D | ∑ 

i =1 

SCUMBLE ins ( i ) (4)

Since SCUMBLE is computed as an average of concurrence by in-

stance, it could be influenced by extreme values. A few instances

with a very high SCUMBLE ins value would introduce a certain de-

viation into the global SCUMBLE measure. To estimate the impor-

tance of this deviation, the SCUMBLE.CV metric (see Eq. (5) ) pro-

vides the corresponding coefficient of variation. The higher is the

SCUMBLE.CV , the larger would be the differences in concurrence
mong instances. 

CUMBLE.CV = 

SCUMBLE σ

SCUMBLE 
, 

SCUMBLE σ = 

√ 

| D | ∑ 

i =1 

(SCUMBLE ins (i ) − SCUMBLE) 
2 

| D | −1 

(5)

The SCUMBLE measure for an MLD would provide a glimpse at

ow much concurrence between imbalanced labels there is in it.

t also would be interesting to know which labels are more af-

ected by this problem. This is the aim of the SCUMBLELbl metric

 Eq. (6) ). The SCUMBLELbl.CV metric can also be obtained, follow-

ng the same procedure described above for SCUMBLE.CV . Since the

umber of instances in which the assessed label appears is used as

enominator, dividing the sum of SCUMBLE , that SCUMBLELbl will

e lower for majority labels is something intuitively deductible.

ajority labels usually will interact with minority ones only in a
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Fig. 2. Label concurrence in yeast MLD. 
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ew instances, those containing the minority label. Therefore, this

etric would allow comparisons between labels with a similar fre-

uency in the MLD. Our second hypothesis is that this information

ould be useful to know which of the minority labels are in fact

eavily related to majority ones. In other words, which of them are

ifficult labels. 

CUMBLELbl ( y ) = 

∑ | D | 
i =1 

� y ∈ Y i � . SCUMBLE ins ( i ) ∑ | D | 
i =1 

� y ∈ Y i � 
(6) 

Whether our initial hypothesis are correct or wrong, and there-

ore these metrics are able to predict the difficulty that an MLD

mplies for resampling algorithms or not, is something to be

roven experimentally. 
. The algorithm REMEDIAL 

In this section the algorithm REMEDIAL, firstly introduced in

36] as a specific method for MLDs with concurrence of highly

mbalanced labels, is described. How REMEDIAL has been imple-

ented into the mldr package, and how to use it, is also explained

n Appendix A . 

As its name suggests, REMEDIAL ( REsampling MultilabEl datasets

y Decoupling highly ImbAlanced Labels ) is a method specifically de-

igned for MLDs that suffer from concurrence between imbalanced

abels. In this context, highly imbalanced labels has to be under-

tood as labels with large differences in their IRLbls . This is a fact

ssessed with the SCUMBLE measure, thus REMEDIAL is directed to

LDs with a high SCUMBLE level. 

When the few samples in which a minority label is present

lso contain one or more majority labels, whose frequency in the
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Table 1 

Main characteristics of the datasets. 

Dataset Instances Attributes Labels Labelsets Card Dens MeanIR MaxIR SCUMBLE Ref. 

Corel5k 50 0 0 499 374 3175 3.522 0.009 189.568 1 120.0 0 0 0.394 [37] 

Mediamill 43,907 120 101 6555 4.376 0.043 256.405 1 092.548 0.355 [38] 

Cal500 502 68 174 502 26.044 0.150 20.578 88.800 0.337 [19] 

Enron 1702 1001 53 753 3.378 0.064 73.953 913.0 0 0 0.303 [20] 

Corel16k 13,618 500 144 4692 2.815 0.020 32.998 116.407 0.279 [39] 

Cs 9270 635 274 4749 2.556 0.009 85.002 226.700 0.272 [3] 

Tmc2007 28,596 49,060 22 1341 2.158 0.098 15.157 41.980 0.175 [40] 

Yeast 2417 103 14 198 4.237 0.303 7.197 53.412 0.104 [21] 

Bibtex 7395 1836 159 2856 2.402 0.015 12.498 20.431 0.094 [41] 

Medical 978 1449 45 94 1.245 0.028 89.501 266.0 0 0 0.047 [22] 

Genbase 662 1186 27 32 1.252 0.046 37.315 171.0 0 0 0.029 [4] 
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2 The dataset partitions used in this experimentation, as well as color version of 

all figures, are available to download at http://simidat.ujaen.es/SCUMBLE . 
MLD is much higher, the power of the input features to predict

the labels might be biased to the majority ones. Our hypothesis

is that, in a certain way, majority labels are masking the minority

ones when they appear together, a problem that could be solved

to some extent by decoupling the labels in these instances. 

REMEDIAL is kind of a resampling algorithm. It could be seen as

an oversampling method, since it produces new instances in some

cases. At the same time it also modifies existent samples. How-

ever, REMEDIAL never changes the number of samples associated

to each label, i.e., the absolute frequency of the labels in the MLD.

In short, REMEDIAL is an editing plus oversampling algorithm, and

it is an approach which has synergies with traditional resampling

techniques. The method pseudo-code is shown in Algorithm 1 . 

Algorithm 1 REMEDIAL algorithm. 

1: function REMEDIAL (MLD D , Labels L ) 

2: � Calculate imbalance levels 

3: IRLbl l ← calculateIRLbl( l in L ) 

4: IRMean ← IRLbl 

5: � Calculate SCUMBLE 

6: SCUMBLEIns i ← calculateSCUMBLE( D i in D ) 

7: SCUMBLE ← SCUMBLEIns 

8: for each instance i in D do 

9: if SCUMBLEIns i > SCUMBLE then 

10: D 

′ 
i 
← D i � Clone the affected instance

11: � Maintain minority labels 

12: D i [ l abel s IRLbl < = IRMean ] ← 0 

13: � Maintain majority labels 

14: D 

′ 
i 
[ l abel s IRLbl > IRMean ] ← 0 

15: D ← D + D 

′ 
i 

16: end if 

17: end for 

18: end function 

The IRLbl, IRMean and SCUMBLE measures are computed in lines

2–7. SCUMBLE Ins i 
is the concurrence level of the instance D i . The

mean SCUMBLE for the MLD is obtained by averaging the individual

SCUMBLE for each sample. 

Taking the mean SCUMBLE as reference, only the samples with

a SCUMBLEIns > SCUMBLE are processed. Those instances, which

contain minority and majority labels, are decoupled into two in-

stances, one containing only the majority labels and another one

with the minority labels. In line 10 D i , a sample affected by the

problem at glance, is cloned in D 

′ 
i 
. The formula in line 12 edits the

original D i instance by removing the majority labels from it. Ma-

jority labels are considered as those whose IRLbl is equal or below

to IRMean . Line 14 does the opposite, removing from the cloned

D 

′ 
i 

the minority labels. D i belongs to the D MLD, but D 

′ 
i 

has to be

added to it (line 15). 
What differentiates REMEDIAL from existing resampling meth-

ds, such as the ones enumerated in Section 2.3 , is that it does

ot change the label frequencies in the MLD. All existent proposals

ncrease the number of instances associated to minority labels or

ecrease the amount of samples linked to majority ones. On the

ther hand, the goal of REMEDIAL is to look for instances where

inority and majority labels appear together, splitting them if is it

ecessary, but without deleting or adding labels. As far as we are

oncern, there is not a comparable method to REMEDIAL proposed

n the literature. 

. Experimentation and analysis 

The conducted experimentation has been structured into two

hases. First, the interest is in checking how the SCUMBLE level

mpacts the performance of some resampling methods. Second,

ow the proposed REMEDIAL algorithm influences the MLDs, and

he classification behavior, is analyzed. The test bed framework is

escribed in the next subsection, the obtained results and corre-

ponding analysis of the two aforementioned phases are provided

n the following ones. 

.1. Experimental framework 

In the first phase of the experimentation, to determine the use-

ulness of the SCUMBLE metric, six of the MLDs shown in Table 1 ,

orel5k, cal500, enron, yeast, medical and genbase, were used.

hey have been chosen as representatives of different SCUMBLE

alues, including the extreme levels, corel5k (highest) and genbase

lowest), and four values which are in between. The rightmost col-

mn indicates each dataset’s origin. All of them are imbalanced,

o theoretically they could benefit from applying a resampling al-

orithm. Aside from the SCUMBLE measure, the MaxIR and MeanIR

alues are also shown. These measurements correspond to whole

atasets. The values taken as reference point to the posterior anal-

sis will be average values from training partitions 2 using a 2 × 5

olds scheme. The datasets appear in Table 1 sorted by SCUMBLE

alue, from higher to lower. According to this measure, corel5k and

al500 would be among the most difficult MLDs in the first group,

ince they have a high level of concurrence among labels with dif-

erent imbalance levels. On the other hand, medical and genbase

ould be the most benefited from resampling , as most of the ma-

ority/minority labels in them do not appear together. 

Regarding the resampling algorithms, the two proposed in

34] have been applied. Both are based on the LP transforma-

ion. LP-ROS does oversampling by cloning instances with minor-

ty labelsets, whereas LP-RUS performs undersampling removing

amples associated to majority labelsets. All the dataset partitions

http://simidat.ujaen.es/SCUMBLE
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ere preprocessed, and the imbalance measures were calculated

or each algorithm. 

In the second phase of the experimentation, to check the influ-

nce of REMEDIAL in classification results, the eleven MLDs shown

n Table 1 have been given as input, before and after preprocessing

hem with REMEDIAL, to six different MLC algorithms: 

• BR ( Binary Relevance ) [25] . Ensemble of binary classifiers. It is

a transformation based method. A binary classifier is generated

for each label and the individual predictions are joined to ob-

tain the final prediction. 

• HOMER ( Hierarchy of Multilabel Classifiers ) [42] . Ensemble of

multiclass classifiers. It is a transformation method based on

the label powerset approach, thus each label combination is in-

terpreted as a label class. 

• IBLR ( Instance-Based Learning by Logistic Regression ) [43] . In-

stance based classifier. IBLR is an improved version of ML-kNN

[27] , the best-known instance based multilabel classifier. 

• CLR ( Calibrated Label Ranking ) [44] . Ensemble of binary classi-

fiers based on pair-wise comparisons. A binary classifier is gen-

erated for each label pair, instead of each label as in BR. The

classifier produces a ranking of labels, from which the predicted

labelset is obtained after applying a threshold. 

• ECC ( Ensemble of Classifier Chains ) [45] . Ensemble of binary clas-

sifiers based on chaining each model with the next one. The en-

semble generates several chains setting the classifiers for each

label at random locations in their respective chain. 

• EPS ( Ensemble of Pruned Sets ) [46] . Ensemble of multiclass clas-

sifiers with pruned labelsets. Each classifier relies on the PS

[47] method to prune infrequent labelsets, easing the work of

the underlying multiclass classifier. 

The C4.5 tree induction algorithm has been used as base classi-

er where an underlying binary or multiclass classifier is needed.

efault parameters were used in all cases. 

As stated in [48] , the performance of a multilabel classifier

hould be always assessed by means of several evaluation met-

ics. In this case, classification results are evaluated using five

sual multilabel measures: Hamming Loss (HL), Precision, Macro-

Measure (MacroFM), One Error (OE), and Ranking Loss (RL). HL

see Eq. (7) ) is a global sample-based measure. It assesses differ-

nces between Z i , the predicted labelset, and Y i , the real one, with-

ut distinction among labels. The � operator returns the symmet-

ic difference between both labelsets. The lower the HL the better

he predictions are. Precision (8) is also example-based, and it is

mong the most usual performance metrics when it comes to eval-

ate a classifier. MacroFM is the label-based version of the usual F-

easure (see Eqs. (8) –( 10 )). As can be seen in Eq. (11) , in MacroFM

-Measure is evaluated independently for each label and then it

s averaged. In the latter equation TP stands for True Positives, FP

or False Positives, TN for True Negatives , and FN for False Negatives .

E (12) and RL (13) are ranking-based evaluation metrics. In these

quations, rk ( x i , l ) is a function that returns the confidence degree

or the label l in the prediction Z provided by the classifier for the
i 

Table 2 

Imbalance levels after applying resampling algorithms (average values on

LP-ROS 

MaxIR MeanIR 

Dataset Before After Before After 

Corel5k 896.0 0 0 969.400 166.057 140.743

Cal500 133.192 179.358 21.274 25.468

Enron 657.050 710.967 72.552 53.255

Yeast 53.689 15.418 7.218 2.612 

Medical 212.800 39.963 68.388 10.556 

Genbase 136.800 13.703 31.665 4.500 
nstance x i . Additional information about all these metrics can be

ound in [1] . 

L = 

1 

| D | 
| D | ∑ 

i =1 

| Y i �Z i | 
| L | . (7) 

 recision = 

1 

| D | 
| D | ∑ 

i =1 

| Y i ∩ Z i | 
| Z i | (8) 

ecall = 

1 

| D | 
| D | ∑ 

i =1 

| Y i ∩ Z i | 
| Y i | (9) 

-Measure = 2 ∗ P recision ∗ Recall 

P recision + Recall 
(10) 

acroFM = 

1 

| L | 
| L | ∑ 

i =1 

F-Measure ( TP i , FP i , TN i , FN i ) (11)

E = 

1 

n 

n ∑ 

i =1 

� [ argmax 
y ∈ Z i 

〈 rk (x i , y ) 〉 / ∈ Y i ] � . (12)

L = 

1 

n 

n ∑ 

i =1 

1 

| Y i | . | Y i | 
| y a , y b : rk (x i , y a ) > rk (x i , y b ) | , 

(y a , y b ) ∈ Y i × Y i (13) 

.2. SCUMBLE influence in preprocessing and classification algorithms 

Once the LP-ROS and LP-RUS resampling algorithms were ap-

lied, the imbalance levels on the preprocessed MLDs were reeval-

ated. Table 2 shows the new MaxIR and MeanIR values for each

ataset. Comparing these values with the original ones, it can be

erified that a general improvement in the imbalance levels has

een achieved. Although there are some exceptions, in most cases

oth MaxIR and MeanIR are lower after applying the resampling

lgorithms. 

It would be interesting to know if the imbalance reduction is

roportionally coherent with the values obtained from the SCUM-

LE measure. The graphs in Figs. 3 and 4 are aimed to visually

llustrate the connection between SCUMBLE values and the rela-

ive variations in imbalance levels. For each MLD, their SCUMBLE

alue is represented along with the percentage change in MaxIR

nd MeanIR after applying the LP-ROS/LP-RUS resampling methods.

he tendency for the three values among the six MLDs is depicted

y three logarithmic lines. As can be seen, a clear parallelism ex-

sts between the continuous line, which corresponds to SCUMBLE ,

nd the dashed lines. This affinity is specially remarkable with the

P-RUS algorithm ( Fig. 4 ). 

Although the previous figures allow to infer that an important

orrelation between the SCUMBLE measure and the success of the

esampling algorithms exists, this relationship must be formally
 training partitions). 

LP-RUS 

MaxIR MeanIR 

Before After Before After 

 896.0 0 0 817.100 166.057 155.032 

 133.192 133.192 21.274 21.274 

 657.050 620.050 72.552 68.672 

53.689 83.800 7.218 19.884 

212.800 46.570 68.388 6.371 

136.800 150.800 31.665 51.157 
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Fig. 3. SCUMBLE vs. changes in imbalance level after applying LP-ROS. 

Fig. 4. SCUMBLE vs. changes in imbalance level after applying LP-RUS. 
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Table 3 

Results from the Pearson correlation tests. 

SCUMBLE vs. �MaxIR SCUMBLE vs. �MeanIR 

Algorithm Cor p -value Cor p -value 

LP-ROS 0.8120 0.0497 0.9189 0.0096 

LP-RUS 0.8607 0.0278 0.8517 0.0314 
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Table 4 

F-measure values obtained by HOMER MLC algorithm (average values over test par- 

titions). 

Dataset Base LP-RUS LP-ROS �RUS �ROS 

Corel5k 0.3857 0.2828 0.2920 –26.6788 –24.2935 

Cal500 0.3944 0.3127 0.3134 –20.7150 –20.5375 

Enron 0.5992 0.5761 0.5874 –3.8551 –1.9693 

Yeast 0.6071 0.6950 0.6966 14.4787 14.7422 

Medical 0.9238 0.9158 0.9162 –0.8660 –0.8227 

Genbase 0.9896 0.9818 0.9912 –0.7882 0.1617 
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nalyzed. To this end, a Pearson correlation test was applied over

he SCUMBLE values and the relative changes in imbalance lev-

ls for each resampling algorithm. The resulting correlation coef-

cients and p-values are shown in Table 3 . It can be seen that all

he coefficients are above 80%, and all the p-values are under 0.05.

herefore, a statistical correlation between the SCUMBLE measure

nd the behavior of the tested resampling algorithms can be con-

luded. 

Following this analysis, it seems reasonable to avoid resampling

lgorithms when the SCUMBLE measure for an MLD is well above

.1, such as is the case with corel5k, cal500 and enron. In this situ-

tion the benefits obtained from resampling, if any, are very small.

he result can even be a worsening of the imbalance level. In aver-

ge, the MeanIR for the three MLDs with SCUMBLE > 0.3 has been

educed only by 6%, while the MaxIR is actually increasing in the

ame percentage. By contrast, the average MeanIR reduction for the

ther three MLDs, with SCUMBLE � 0.1, reaches 52% and the MaxIR

eduction 54%. 

Aiming to know how these changes in the imbalance levels

ould influence classification results, and if a correlation with

CUMBLE values exists, the HOMER [42] algorithm was used. It

ust be highlighted that the interest here is not in the raw per-

ormance values, but in how they change after a resampling algo-

ithm has been applied and how this change correlates with SCUM-

LE values. Therefore, the HOMER algorithm is used only as a tool

o obtain classification results before and after applying the re-

ampling. Any other MLC algorithm could be used for this task.

dditionally, the proposed SCUMBLE measure is not used in the

xperimentation to influence the behavior of LP-ROS, LP-RUS or

OMER by any means. The goal is to explore the correlation be-

ween changes in classification results and SCUMBLE values. 

Table 4 shows these results assessed with F-measure, the har-

onic mean of precision and recall measures. It can be seen that

ith the three MLDs which show high SCUMBLE values, the pre-

rocessing has produced a remarkable deterioration in classifica-

ion results. Among the other three MLDs the resampling has im-

roved them in some cases, while producing a slight worsening

less than 1%) in others. Therefore, even though the MLC algo-

ithm behavior would be also affected by other dataset characteris-

ics, that the SCUMBLE metric would offer valuable information to
Table 5 

Results before and after applying REMEDIAL assessed with Hamming Loss ( ↓ ). 
BR CLR ECC 

Dataset Before After Before After Before After

Bibtex 0.0147 0.0132 0.0127 0.0130 0.0126 0.013

Cal500 0.1630 0.1497 0.1381 0.1442 0.1422 0.149

Corel16k 0.0206 0.0196 0.0198 0.0195 0.0387 0.019

Corel5k 0.0098 0.0094 0.0095 0.0094 0.0094 0.008

Cs 0.0094 0.0089 0.0088 0.0088 0.0086 0.057

Enron 0.0522 0.0540 0.0476 0.0517 0.0484 0.008

Genbase 0.0012 0.0084 0.0014 0.0080 0.0014 0.038

Mediamill 0.0343 0.0331 0.0291 0.0321 0.0288 0.011

Medical 0.0107 0.0131 0.0109 0.0132 0.0100 0.071

Tmc2007 0.0568 0.0684 0.0538 0.0658 0.0507 0.231

Yeast 0.2505 0.2347 0.2202 0.2228 0.3594 0.009
etermine the convenience of applying a resampling method can

e concluded. 

.3. REMEDIAL experimental results 

Once the usefulness of the SCUMBLE metric has been demon-

trated, the next experimental phase has been applying the al-

orithm REMEDIAL to the eleven datasets previously shown in

able 1 , then learning from them using six multilabel classifiers.

he results obtained from each one of them over the datasets, be-

ore and after preprocessing, are provided in Tables 5 –9 . Each table

orrespond to one evaluation metric. Best results are highlighted in

old. EPS was not able to process a couple of datasets. 

The analysis of these results can be structured into three parts

epending on where we put the focus, the classifiers, the datasets

r the evaluation metrics. 

• Going through the results by classifier, that REMEDIAL works

better with BR and HOMER than with IBLR and CLR can be eas-

ily observed. The results for ECC and EPS are not conclusive,

with almost as many cases with improvements and worsenings.

Binary relevance based algorithms train a classifier for each la-

bel, taking as positive the instances containing it and as neg-

ative the remainder samples. When a majority label is being

processed, all the instances in which it appears jointly with a

minority label are processed as positive, disregarding the fact

that they contain other labels. The decoupling of these labels

tends to balance the bias of each classifier, something that also

influences the behavior of ECC. LP based algorithms, such as

HOMER, surely are favored by REMEDIAL, since the decoupling

produces simpler labelsets. Moreover, the number of distinct la-

belsets is reduced after the resampling. The influence of REME-

DIAL on instance based classifiers, such as IBLR, is easy to de-

vise. The attributes of the decoupled samples do not change,

so they will occupy exactly the same position with respect to

the instance which is taken as reference for searching nearest

neighbors. Therefore, the classifier will get two samples at the

same distance but with disjoint labelsets, something that can
EPS HOMER IBLR 

 Before After Before After Before After 

5 – – 0.0185 0.0166 0.0165 0.0155 

0 – – 0.1875 0.1815 0.2341 0.2125 

5 0.0196 0.0268 0.0271 0.0228 0.0199 0.0198 

9 0.0173 0.0101 0.0132 0.0118 0.0242 0.0148 

8 0.0133 0.0112 0.0117 0.0104 0.0182 0.0143 

6 0.0733 0.0601 0.0574 0.0555 0.0571 0.0593 

6 0.0028 0.0040 0.0016 0.0064 0.0022 0.0092 

8 0.0524 0.0377 0.0384 0.0355 0.0291 0.0338 

7 0.0141 0.0143 0.0109 0.0118 0.0198 0.0198 

6 0.0872 0.0693 0.0607 0.0647 0.0646 0.0775 

4 0.2042 0.2853 0.2601 0.2476 0.1941 0.2264 
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Table 6 

Results before and after applying REMEDIAL assessed with Precision ( ↑ ). 
BR CLR ECC EPS HOMER IBLR 

Dataset Before After Before After Before After Before After Before After Before After 

Bibtex 0.5770 0.7451 0.8267 0.9173 0.7385 0.8023 – – 0.4701 0.5356 0.4920 0.5004 

Cal500 0.4397 0.5326 0.6363 0.8327 0.5636 0.6 84 8 – – 0.3842 0.3983 0.2859 0.2743 

Corel16k 0.3610 0.4682 0.4455 0.6056 0.1944 0.6913 0.4697 0.2010 0.2475 0.2921 0.3623 0.3079 

Corel5k 0.3643 0.4781 0.4621 0.5983 0.5465 0.6 86 8 0.1938 0.2906 0.2232 0.2438 0.0598 0.0602 

Cs 0.5174 0.6239 0.6297 0.7247 0.6211 0.7611 0.3366 0.3632 0.3884 0.4394 0.1076 0.0919 

Enron 0.6391 0.7063 0.7047 0.7813 0.6681 0.9960 0.4873 0.5592 0.5893 0.6269 0.6151 0.6519 

Genbase 0.9947 0.9977 0.9946 0.9977 0.9950 0.8877 0.9950 0.9942 0.9932 0.9961 0.9899 0.9890 

Mediamill 0.6683 0.8091 0.7959 0.8707 0.7986 0.8740 0.4827 0.6271 0.6177 0.6805 0.7758 0.8388 

Medical 0.8633 0.8680 0.8699 0.8725 0.8636 0.8701 0.7813 0.7837 0.8639 0.8648 0.7272 0.7552 

Tmc2007 0.7675 0.8334 0.7855 0.8539 0.8056 0.7370 0.6079 0.6903 0.7389 0.7829 0.7309 0.8031 

Yeast 0.6020 0.6647 0.6768 0.7323 0.4777 0.6899 0.6960 0.5422 0.5876 0.6169 0.7110 0.7442 

Table 7 

Results before and after applying REMEDIAL assessed with Macro F-Measure ( ↑ ). 
BR CLR ECC EPS HOMER IBLR 

Dataset Before After Before After Before After Before After Before After Before After 

Bibtex 0.3368 0.3604 0.3342 0.3518 0.3750 0.3763 – – 0.2984 0.2985 0.2140 0.1950 

Cal500 0.2933 0.2286 0.3323 0.2436 0.3058 0.0670 – – 0.3301 0.3372 0.2772 0.2527 

Corel16k 0.1550 0.1266 0.1084 0.0707 0.1477 0.1056 0.1223 0.1401 0.1510 0.1377 0.1146 0.0956 

Corel5k 0.1774 0.1827 0.1330 0.1073 0.1666 0.2922 0.1860 0.1767 0.1963 0.1860 0.1060 0.1432 

Cs 0.3457 0.3795 0.2801 0.2606 0.3617 0.2760 0.3044 0.2992 0.2999 0.2922 0.1355 0.1341 

Enron 0.4029 0.4189 0.4199 0.3755 0.4324 0.8970 0.3828 0.3933 0.3836 0.3828 0.3458 0.2755 

Genbase 0.9890 0.9923 0.9848 0.9415 0.9906 0.1741 0.9775 0.9527 0.9806 0.9662 0.9655 0.8449 

Mediamill 0.2836 0.2959 0.2307 0.2011 0.2445 0.8085 0.3382 0.2657 0.2492 0.2147 0.2818 0.1820 

Medical 0.8165 0.8013 0.7942 0.7864 0.8179 0.3318 0.7283 0.7292 0.7981 0.7855 0.6404 0.6189 

Tmc2007 0.6015 0.4243 0.6073 0.3578 0.5966 0.4063 0.5802 0.5951 0.5981 0.4551 0.4667 0.2786 

Yeast 0.4341 0.5204 0.4480 0.4075 0.4782 0.1356 0.4629 0.4428 0.4363 0.4400 0.4945 0.3901 

Table 8 

Results before and after applying REMEDIAL assessed with One Error ( ↓ ). 
BR CLR ECC EPS HOMER IBLR 

Dataset Before After Before After Before After Before After Before After Before After 

Bibtex 0.5060 0.4648 0.4110 0.4120 0.3886 0.4018 – – 0.6040 0.6040 0.6043 0.6651 

Cal500 0.7202 0.6963 0.1254 0.1245 0.1504 0.3735 – – 0.8167 0.7660 0.8756 0.8885 

Corel16k 0.6964 0.7289 0.6650 0.6696 0.7138 0.7036 0.6809 0.7906 0.7712 0.8065 0.7106 0.7359 

Corel5k 0.7067 0.7134 0.6716 0.6753 0.6828 0.5181 0.7853 0.9070 0.7994 0.8165 0.9401 0.9066 

Cs 0.5690 0.5679 0.5112 0.5130 0.4833 0.3144 0.5596 0.6629 0.6680 0.7042 0.9041 0.8711 

Enron 0.3922 0.3554 0.2350 0.2311 0.2700 0.0037 0.3044 0.4168 0.4456 0.4360 0.3805 0.3734 

Genbase 0.0052 0.0060 0.0022 0.0030 0.0022 0.1769 0.0037 0.0068 0.0114 0.0106 0.0098 0.0384 

Mediamill 0.3943 0.2093 0.1125 0.1155 0.1153 0.1616 0.1155 0.1651 0.3839 0.3479 0.1215 0.1351 

Medical 0.1906 0.1984 0.1559 0.1544 0.1534 0.1716 0.1830 0.1917 0.2107 0.2224 0.3190 0.3175 

Tmc2007 0.2374 0.2137 0.1575 0.1544 0.1603 0.2685 0.1855 0.2122 0.2788 0.2836 0.2298 0.2345 

Yeast 0.4181 0.3856 0.2399 0.2366 0.2574 0.7249 0.2520 0.2873 0.4268 0.3885 0.2255 0.2441 
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be confusing depending on how the algorithm predicts the la-

belset of the reference sample. 

• Analyzing the results by dataset, two thirds of the best values

for enron, corel5k and cal500 are obtained after applying RE-

MEDIAL. As can be checked, these are the datasets with highest

SCUMBLE levels. On the other hand, the results that correspond

to the genbase, medical and tmc2007 have not improvements.

As shown in Table 1 , these are three datasets with low SCUM-

BLE values. Although some differences are quite small, in gen-

eral the decoupling of labels has worsened classification per-

formance. The remainder five MLDs get mixed results, although

this trend (the higher the SCUMBLE level the more the result

is improved) is similar. As a consequence a clear guideline fol-

lows from the analysis of these results, REMEDIAL should not

be used with MLDs with low SCUMBLE levels, since it is an al-

gorithm specifically designed to face the opposite casuistic. 

• Lastly, focusing on the evaluation metrics, that Precision is

higher after applying REMEDIAL for most of the datasets and

classifiers, with only 9 out of 64 (14%) cases without improve-

ments, can be observed. According to the other four evaluation
metrics, HL, MacroFM, OE and RL, there is almost a tie between

cases whose results have been improved and those which have

not achieved this goal. The view changes drastically depending

on each classifier/metric combination. For instance, the HL and

Precision values for HOMER state that REMEDIAL improves re-

sults in 19 out of 22 cases (86%), but MacroFM and RL indicates

the same only for 5 out of 22 (23%). 

The statistical significance of the differences in the results just

ointed out has been assessed by means of a paired Wilcoxon sta-

istical test. The exact p -values for each metric/classifier are the

hown in Table 10 . Those preceded with a ∗ symbol can be con-

idered as significant from a statistical point of view, applying

he usual 0.05 threshold. Most of the differences are not statis-

ically significant. However, Precision and MacroFM show impor-

ant differences in half or more of the cases. The former metric re-

eals statistically significant improvements with BR, CLR, ECC and

OMER. On the contrary, MacroFM indicates that the worsening of

esults is remarkable for CLR, HOMER and IBLR. 
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Table 9 

Results before and after applying REMEDIAL assessed with Ranking Loss ( ↓ ). 
BR CLR ECC EPS HOMER IBLR 

Dataset Before After Before After Before After Before After Before After Before After 

Bibtex 0.1635 0.1986 0.0620 0.0622 0.0950 0.1206 – – 0.3295 0.3382 0.1742 0.1824 

Cal500 0.3159 0.2086 0.1809 0.1805 0.1975 0.2343 – – 0.3911 0.3775 0.3790 0.3226 

Corel16k 0.1857 0.1848 0.1335 0.1335 0.2907 0.1840 0.1772 0.3367 0.3973 0.4228 0.1687 0.1733 

Corel5k 0.1474 0.1416 0.1176 0.1176 0.1414 0.1295 0.4807 0.6748 0.4387 0.4690 0.2754 0. 2620 

Cs 0.1996 0.1703 0.0672 0.0672 0.1118 0.0911 0.2604 0.3409 0.3532 0.3770 0.2234 0.2271 

Enron 0.1746 0.1409 0.0737 0.0736 0.0852 0.0062 0.1667 0.2333 0.2502 0.2759 0.1066 0.1066 

Genbase 0.0030 0.0137 0.0088 0.0089 0.0036 0.0534 0.0078 0.0096 0.0060 0.0240 0.0040 0.0326 

Mediamill 0.1742 0.0761 0.0336 0.0338 0.0439 0.0394 0.0738 0.1154 0.2162 0.2236 0.0391 0.0404 

Medical 0.0703 0.0785 0.0297 0.0297 0.0357 0.0547 0.0686 0.0664 0.0999 0.1045 0.0653 0.0640 

Tmc2007 0.1139 0.1271 0.0347 0.0338 0.04 4 4 0.1895 0.0631 0.0956 0.1547 0.1852 0.0558 0.0589 

Yeast 0.3156 0.2536 0.1799 0.1785 0.2021 0.1442 0.1854 0.2241 0.3407 0.3213 0.1643 0.1768 

Table 10 

Exact p -values produced by the Wilcoxon statistical test for each classifier/metric. 

Classifier Hamming Loss Precision Macro F-Measure One Error Ranking Loss 

BR 0.824098 ∗0.003857 0.893904 0.142368 0.266402 

CLR ∗0.016316 ∗0.003857 ∗0.006692 0.893904 0.824098 

ECC 0.689084 ∗0.029383 0.398305 0.449804 0.964541 

EPS 0.150786 0.352542 0.932647 0.150786 0.150786 

HOMER 0.168167 ∗0.003857 ∗0.029383 0.893904 ∗0.045447 

IBLR 0.6 834 81 0.266402 ∗0.018408 0.398305 0.414823 
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Overall, REMEDIAL would be a recommended resampling for

LDs with high SCUMBLE levels and when BR or LP based clas-

ifiers are going to be used. In these cases the prediction of mi-

ority labels would be improved, and the global performance of

he classifiers would be better. MLDs such as genbase, medical and

mc2007, as their intrinsic traits have demonstrated, should not be

rocessed with REMEDIAL. The same would be applicable to clas-

ifiers such as IBLR, as putting two data samples at the same loca-

ion but having disjoint labelsets tend to confuse this kind of algo-

ithms. Excluding these cases, the global evaluation of the results

roduced by REMEDIAL would be much more positive. 

The already described before are the benefits brought by RE-

EDIAL on their own, but this algorithm could be used as a first

tep aimed to ease the work of traditional resampling techniques.

ixing REMEDIAL with standard oversampling and undersampling

echniques would be an interesting further study. 

. Conclusions 

From the conducted experimentation and further analysis it can

e inferred that, while working with imbalanced MLDs, standard

esampling methods should be avoided when the SCUMBLE level is

ell above 0.1. In this situation the benefits from resampling are

lmost negligible, or even detrimental. 

In the described scenario, with MLDs suffering from high con-

urrence among imbalance labels, the proposed REMEDIAL algo-

ithm has proven to be effective. The algorithm looks for instances

ith a high SCUMBLE level and decouples minority and majority

abels, producing new instances. The conducted experimentation

as proven that REMEDIAL is able to improve classification results

hen applied to MLDs with a high SCUMBLE . 

How to assess the concurrence problem, and how to deal with

t in practice, has been explained by means of the mldr R package

see Appendix A ). This software has been extended by the authors

o include the metrics and algorithms described in this paper. The

oal is to help anyone interested in this topic to conduct their per-

onal analysis. 

It could be concluded that basic resampling algorithms, which

lone the labelsets in new instances or remove samples, are not

 general solution in the multilabel field. More sophisticated ap-
roaches, which take into account the concurrence among imbal-

nced labels, would be needed. A potential way for designing these

ew algorithms would be joining REMEDIAL with some of the ex-

stent resampling methods. Once the labels have been decoupled,

raditional oversampling and undersampling algorithms would find

ess obstacles to do their work. 
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ppendix A. SCUMBLE and REMEDIAL implementations in the 

ldr package 

This appendix describes how to obtain the SCUMBLE measure-

ent for any MLD, as well as how to apply the REMEDIAL algo-

ithm proposed in this study to any MLD, by means of a software

ackage developed by the same authors. 

1. Assessing label concurrence with the mldr package 

The mldr package [18] provides an easy way to make ex-

loratory analysis over MLDs from R, one of the best known tools

or machine learning tasks. A quick tutorial describing how to in-

tall and use this package can be found in [49] . The capabilities of

he mldr package have been extended to include functions aimed

o ease the concurrence analysis in MLDs. These new capabilities,

eveloped ad hoc for the present work, are described below. 

Once the package has been loaded into R, the first step will be

eading the MLD to analyze. MULAN [50] and MEKA [51] file for-

ats are supported. In order to load an MLD, the mldr function

as to be called providing the file name. The returned result is an

3 R object containing the data (instances with attribute values)

nd also a plethora of characterization metrics. 

The group of metrics that are general to the whole MLD can be

etrieved with the summary function, as shown in the upper part

f Fig. A.5 . In this example the measures belonging to the genbase
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Fig. A5. Obtaining basic concurrence metrics using the mldr R package. 

Fig. A6. The concurrence report provides information about label interactions, both textually and visually. 
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3 An online version of the mldr’s web interface, accessible from any browser 

without needing to install R or the mldr package, is available at https://fdavidcl. 

shinyapps.io/mldr . Although the bandwidth provided by shinyapps.io is limited, the 

application can be used to test the functionality described in this section. 
MLD have been obtained. By querying the labels member of the

object the information relative to each label is retrieved, includ-

ing the SCUMBLELbl and its corresponding coefficient of variation

as shown in the bottom part of the same Fig. A.5 . 

Relying on the measures obtained with the previous methods,

essentially the IRLbl, SCUMBLELbl and name of each label, it is pos-

sible to infer which are the minority labels and which of those are

more affected by the concurrence problem. However, it would not

be easy to know what majority labels are interacting with each

minority one. This information can be visually explored using the

specific plot function provided by the mldr package, able to gen-

erate interaction plots similar to the ones shown in Figs. 1 and 2 . 

Another alternative would be calling the mldr’s function

concurrenceReport . It generates a full report stating what are

the SCUMBLE levels for the MLD and each of its labels, as well as

a summary of label interactions and a plot of them. This report

is sent to the console by default (see Fig. A.6 ), but it can also be
aved as a PDF document by providing the pdfOutput parameter

ith the TRUE value. The report will include the minority labels

ost affected by the concurrence problem, sorted by their SCUM-

LELbl value. It will be, in fact, a list of difficult labels, along with

he majority labels each one of them interacts with. 

In addition to the aforementioned functions, which are only a

mall sample of the set provided by the mldr package, a web GUI

s also available. This can be launched from the R command line

ith the mldrGUI 3 function. It is structured into several pages,

ccessible by the tags located at the top. In the Concurrence page

he same information provided by the concurrenceReport can

e found, along with a customizable plot showing label interac-

https://fdavidcl.shinyapps.io/mldr
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Fig. A7. The mldr GUI eases the process of obtaining customized concurrence information. 

Fig. A8. MLD basic traits before and after applying the REMEDIAL preprocessing algorithm. 
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ions. This page is partially visible in Fig. A.7 . The list below the

eport allows the interactive selection of labels to be shown in the

lot. The result can be saved to a file. 

Overall, the exploratory tools implemented into the mldr pack-

ge will provide all the information needed to analyze how the

oncurrence among imbalanced labels affects a certain MLD, as

ell as which of the labels could be considered difficult labels. 

2. The mldr package’s REMEDIAL implementation 

Along with the exploratory functionality previously described,

he mldr package has been also extended by including a reference

mplementation of the algorithm REMEDIAL. The function contain-

ng this implementation is called remedial . To use it an mldr ob-

ect has to be given as input, obtaining as output the preprocessed

ersion of the same object. In Fig. A.8 how to use this function is

hown. The algorithm is applied to the genbase MLD, storing the

esult into the genbase.decoupled variable. 

From the information provided by the summary function, cor-

esponding to the MLD before and after the preprocessing, the fol-

owing facts can be observed: 
• The number of instances grows, as REMEDIAL produces new

data samples. 

• Since the number of active labels in the MLD does not change,

neither do the number of labels and the imbalance related met-

rics, such as MeanIR . 

• Because the same number of active labels are split into a larger

number of instances, label cardinality and density decrease. 

• In general, the decoupling of labels tend to produce simpler and

more frequent labelsets. 

• The global SCUMBLE and the SCUMBLELbl are reduced. 

As the algorithm REMEDIAL takes as reference the mean SCUM-

LE to determine which samples are going to be decoupled, and

his measure is reduced as a result of applying REMEDIAL, it can

e run several times over the same data to progressively reduce

he concurrence problem. In Fig. A.9 the emotions MLD is used to

how a simple example. The main metrics of the MLD and its la-

els are displayed after calling the remedial function once and

wice. The differences are remarkable as can be seen. 



52 F. Charte et al. / Neurocomputing 326–327 (2019) 39–53 

Fig. A9. The algorithm can be applied several times to progressively reduce the concurrence problem. 
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