
Information Fusion 54 (2020) 44–60

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

Choosing the proper autoencoder for feature fusion based on data

complexity and classifiers: Analysis, tips and guidelines

Francisco J. Pulgar ∗ , Francisco Charte , Antonio J. Rivera , María J. del Jesus

Andalusian Research Institute on Data Science and Computational Intelligence (DaSCI), Computer Science Dpt., University of Jaén, Jaén 23071, Spain

a r t i c l e i n f o

Keywords:

Classification

Deep learning

Autoencoders

Dimensionality reduction

Feature fusion

a b s t r a c t

Classifying data patterns is one of the most recurrent applications in machine learning. The number of input

features influences the predictive performance of many classification models. Most classifiers work with high-

dimensional spaces. Therefore, there is a great interest in facing the task of reducing the input space. Manifold

learning has been shown to perform better than classical dimensionality reduction approaches, such as Principal

Component Analysis and Linear Discriminant Analysis. In this sense, Autoencoders (AEs) provide an automated

way of performing feature fusion, finding the best manifold to reconstruct the data. There are several models and

architectures of AEs. For this reason, in this study an exhaustive analysis of the predictive performance of different

AEs models with a large number of datasets is proposed, aiming to provide a set of useful guidelines. These will

allow users to choose the appropriate AE model for each case, depending on data traits and the classifier to be

used. A thorough empirical analysis is conducted including four AE models, four classification paradigms and a

group of datasets with a variety of traits. A convenient set of rules to follow is obtained as a result.

1

c

l

i

o

s

w

e

v

h

o

g

u

b

w

(

t

c

t

t

t

f

s

c

e

m

t

h

a

a

g

t

m

i

r

o

p

p

m

a

b

P

(

h

R

A

1

. Introduction

Machine learning is one of the most widely studied fields of artifi-

ial intelligence, due to its extensive application in solving real prob-

ems. The generalization of behaviors from a series of training instances

s the main objective of the methods developed in this field [1] . Some

f the main applications of these algorithms are classification, regres-

ion and clustering [2,3] . In particular, classification is one of the most

ell-known and developed tasks. The main purpose of a classifier is to

stablish a prediction for new patterns, based on the information pro-

ided by training instances. To meet this challenge, different proposals

ave emerged over time that can be categorized into different method-

logies according to their structure and function [4] .

There are very diverse approaches among the existing methodolo-

ies that handle the classification task. Some of the most commonly

sed that offer the best results are: Instance-based learning (IBL), which

ases the prediction on the information provided by the training data

ithout carrying out a training process [5] ; Support Vector Machines

SVMs), which generate a distribution of the examples in the space with

he objective of establishing groupings of related instances [6] ; Artifi-

ial Neural Networks (ANNs), which present an architecture based on

he human brain, and whose objective is to establish relationships be-

ween the data through an internal training process [7] ; And Decision

rees (DTs), which are tree-based models, whose architecture allows dif-
∗ Corresponding author.

E-mail address: fpulgar@ujaen.es (F.J. Pulgar).

ttps://doi.org/10.1016/j.inffus.2019.07.004

eceived 31 January 2019; Received in revised form 17 July 2019; Accepted 17 July

vailable online 18 July 2019

566-2535/© 2019 Elsevier B.V. All rights reserved.
erent features of the data to be evaluated in order to obtain the greatest

eparability between classes [8] .

The approaches included in the previous methodologies have diffi-

ulties when working with data that has certain characteristics. In gen-

ral, these methods are created to work with real data. Therefore, they

ust take the traits of the input data features into account in order

o give the best possible response. One of these characteristics is the

igh dimensionality of the data. At present, the information captured

nd stored is growing due to the increase in the generation, reception

nd storage mechanisms. In this context, the data sets generated have a

rowing number of features, so the classification algorithms must adapt

o this fact. Traditional methodologies decrease their predictive perfor-

ance when working with data that has a large number of features. This

s mainly due to the curse of dimensionality [9,10] .

In this context, different proposals have emerged for handling the

eduction of dimensionality. The fundamental objective of these meth-

ds is to mitigate the effects of high dimensionality on the predictive

erformance obtained with different classifiers [11,12] . Initially, the

rocess consisted of manual evaluation by an expert who selected the

ost relevant features. This task was automated in subsequent years,

long with the very first methods of feature selection [13] . Some of the

est-known algorithms are: Linear Discriminant Analysis (LDA) [14] ,

rincipal Component Analysis (PCA) [15] , Isometric feature mapping

ISOMAP) [16] and Locally Linear Embedding (LLE) [17] . Over time,
 2019

https://doi.org/10.1016/j.inffus.2019.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2019.07.004&domain=pdf
mailto:fpulgar@ujaen.es
https://doi.org/10.1016/j.inffus.2019.07.004

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

n

i

d

w

j

e

t

e

l

m

d

p

t

o

h

t

c

t

r

h

i

t

t

T

a

a

T

p

A

A

T

p

r

m

b

I

a

t

p

d

m

a

m

o

e

m

A

L

A

t

d

s

c

s

t

t

L

o

d

e

a

p

f

u

a

A

o

o

v

m

n

2

d

a

s

s

a

e

u

(

2

t

m

i

p

t

n

c

i

o

a

p

w

h

w

ew approaches have emerged to reduce input space dimensionality that

mprove on aspects of previous tasks or use different methodologies to

eal with the problem [18–21] .

Recently, the term Feature Fusion has emerged, due to the need to

ork with multimedia data using machine learning algorithms. The ob-

ective of this type of method is to combine features with the aim of

liminating non-relevant information [22–24] . In order to carry out this

ask, proposals based on deep learning (DL) have emerged that offer

ffective performance [25] . These good results in certain fields have

ed to a rise in the use of DL methods [26,27] . Specifically, one of the

ost suitable models for the feature fusion task is Autoencoders (AEs),

ue to its operation and architecture [28–34] . In addition to the im-

rovement in predictive performance, the use of dimensionality reduc-

ion models allows a considerable reduction in the computation time

f the classification algorithms. The reason for this is that the original

igh-dimensional data leads to a greater cost in computing time; when

he input space is reduced, a smaller amount of data is provided to the

lassification algorithm and the associated time is reduced [30] .

The architecture of AEs allows them to learn an internal representa-

ion of the input data during the training process. This phase consists of

eproducing the input in the output of the network through a series of

idden layers. When the task of reducing the input space dimensionality

s tackled, the internal coding must be of smaller dimensionality than

he original data. Therefore, the hidden layer that supplies the informa-

ion must be of smaller dimensionality than the input layer [28,30,35] .

his is, however, only an overview of the operation of the AES. There

re different models that include variations in different aspects, for ex-

mple, introducing noise in the input data or changing the loss function.

here a numerous different variants of AEs and it is not possible to incor-

orate all of them in this study. Therefore, four of the most widely used

E models have been considered in this paper. These models are: basic

E [36] , denoising AE [37] , contractive AE [38] and robust AE [39] .

he objective of this study is to carry out an exhaustive study of the

erformance of the different models of AEs in coping with dimensional

eduction. Similarly, the study will not focus on a single classification

ethodology but rather will aim to evaluate the behavior of classifiers

elonging to different methodologies according to the type of AEs used.

n this way the reader is provided with a broad set of tests, as well as

ssociated conclusions that allow decisions to be made when facing the

ask of dimensionality reduction with mediated AEs.

In summary, the objective of this paper is to guide the choice of the

roper autoencoder for feature fusion according to the classifier and the

ata complexity. In this sense, the main contributions are: (1) a para-

etric analysis of the four models of AEs included in the study that

llow users to select the best performing configuration, (2) an experi-

entation of the four classification algorithms including a comparison

f their results with the four AE models and with the original data, (3) an

xperimental demonstration of the AE model that offers the best perfor-

ance for each classification methodology, (4) a comparison between

E models and other classical methods, such as PCA, LDA, ISOMAP and

LE, and (5) a series of guidelines that allow the reader to decide which

E model to use according to the characteristics of the input data.

In conclusion, the experimentation presented in this paper shows

he great performance of the AEs when facing the dimensionality re-

uction task. Specifically, the predictive performance of the four clas-

ifiers considered after applying the most sophisticated models of AEs

learly improves with respect to the basic AE model. In general, the re-

ults generated through any model of AE are better than those that use

he raw data. In addition, experimentation shows that AEs behave bet-

er than other classic models of dimensionality reduction, such as PCA,

DA, ISOMAP and LLE.

This paper is organized as follows: Section 2 includes the main the-

retical concepts that are used throughout the paper: in Section 2.1 the

ifferent classification methodologies and the algorithms used in the

xperimentation are presented; the theoretical foundations of the AEs

re described, as well as each of the AE models involved in the ex-
45
erimentation, in Sections 2.3 and 2.4 . In Section 3 , the experimental

ramework is defined. The selection of the best architecture of AEs is

ndertaken in Section 4 . Section 5 presents the results obtained after

pplying different classification algorithms on the data generated by the

E models. In Section 6 , a comparison between AEs and classic models

f dimensionality reduction is carried out. Section 7 presents a series

f guidelines established according to the experience provided by pre-

ious experimentation, the objective of which is to facilitate decision-

aking when faced with the problem of dimensionality reduction. Fi-

ally, Section 8 includes the main conclusions reached in this study.

. Preliminaries

The main objective of this study is to analyze the performance of

ifferent models of AEs in tackling the task of dimensionality reduction

nd how these new representations affect classification methods corre-

ponding to different paradigms.

For this reason, the use of different classification algorithms is con-

idered. In Section 2.1 , the main methodologies for classification tasks

re presented, as well as the main algorithms used in the subsequent

xperimentation. In addition, it is necessary to introduce the methods

sed to perform dimensionality reduction. For this, the concept of AE

2.3) and the main models used (2.4) are presented.

.1. Classifier paradigms and algorithms

Since the 20th century, different methods for tackling classification

asks have been developed. The proposals can be grouped into several

ethodologies according to their architecture and operation. The ex-

sting paradigms are very diverse, which opens up a large number of

ossibilities when opting for a specific classification method. Some of

hese methodologies are: instance-based learning [5] , artificial neural

etworks [7] , Bayesian networks [40] , support vector machines [6] , de-

ision trees [8] , rule-based systems [41] , genetic algorithms [42] and

nductive logic programming [43] , among others. This wide variety of

ptions requires experts to know the characteristics of each algorithm,

s well as to adapt their choice to the data used in each case. The four

aradigms used in this paper are described in more detail bellow, all of

hich are among the most well-known paradigms:

• Instance-based learning (IBL): This type of algorithm is lazy, that is

to say there is no learning process where a model is built. To make

the prediction, the information provided by the training instances is

used directly in the inference phase [5] .
• Artificial Neural Networks (ANNs): These models are inspired by the

structure of the human brain. The fundamental elements used in the

construction of this type of algorithm are neurons and the connec-

tions between them. ANNs use their own experience to identify re-

lationships between the data [7] .
• Support Vector Machines (SVMs): These methods relate training in-

stances with points in space. The process, called kernel trick , consists

of projecting the data patterns into a space of greater dimension-

ality. Thus, the model manages to separate linearly instances that,

initially, were not separable [6] .
• Decision trees (DTs): The performance and structure of these algo-

rithms is based on trees. The main elements of these models are

the branches, where the attribute that provides more information to

make a division in the samples is evaluated, and the leaves, which

contain the values of the target class [8] .

A specific algorithm of each of these classification methodologies

as been chosen aiming to include a representative of each of the most

idespread paradigms in the experimentation:

• Within the IBL methodology, one of the best known methods is k-

nearest neighbors (kNN). It is a non-parametric algorithm used for

classification and regression tasks [44,45] . In classification, kNN

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

c

c

d

c

t

T

o

i

a

[

T

t

s

c

i

d

m

t

d

d

e

d

m

t

2

t

f

p

T

s

s

o

[

a

a

I

a

r

b

i

m

t

m

t

d

c

s

n

b

I

l

n

o

t

b

t

2

i

g

r

a

u

c

i

l

f

t

a

2

o

n

w

a

t

N

i

[

w

i

n

m

s

w

m

t

does not build a model to undertake the prediction task. The method

does not do any work until it is not necessary to predict a new in-

stance, therefore, it is called the lazy approach [46] . Once the new

example arrives, kNN predicts the class using the information pro-

vided by the k nearest examples, assigning the class that is the most

common among the neighbors.
• Multi-layer perceptron (MLP) is the proposal used to evaluate the

performance of dimensionality reduction in ANNs. MLP is a tradi-

tional model within ANNs [47] . The algorithm can model nonlinear

functions and is trained to learn and generalize knowledge from new

data. MLP is formed by a series of interconnected elements, known

as neurons or nodes. The neurons are organized in different layers

and the connections between them are weighted. During the training

process, the network uses the back-propagation algorithm to trans-

mit the error throughout the network and adjust the weights to min-

imize it [48] . The fundamental objective of the model is to map the

input data through the layers of the network, generating the output

vector [49] .
• SVMs are a type of learning algorithm commonly used for classifica-

tion. This algorithm was originally introduced in 1992 [50] and has

been widely used and extended due to its robust performance. This

type of model separates the training data provided within a hyper-

plane that maximizes the distances between them. In this way, ele-

ments of similar categories will be closer than examples of different

classes. If there is no possible line separation, then the algorithm em-

ploys techniques to perform non-linear mapping to a feature space

[6] .
• There are different proposals for DTs for tackling the task of classi-

fication. In this study C4.5 has been selected because it is a classic

model within this family and because it is widely used to deal with

this type of problem. This algorithm represents the features of the

input data as branches and the different values of the target class as

leaves of the DT. Finally, the classification rules are obtained from

the tree [8,51] .

The methodologies and algorithms proposed for dealing with the

lassification task must take the characteristics of the data used into ac-

ount. These data are often extracted from different sources. At present,

ue to the large number of devices and sensors, one of the most frequent

haracteristics is the high dimensionality of the data. This factor nega-

ively affects the predictive performance of most traditional classifiers.

his phenomenon is known as the curse of dimensionality [9,10] . An-

ther consequence associated with high-dimensional data is the need to

ncrease the number of training instances in order to maintain an accept-

ble level of performance, which is known as the Hughes phenomenon

52] .

This factor affects the paradigms specified in this study differently.

he IBL algorithms base their operation on the information provided by

he nearest instances; therefore, distance is a fundamental element. In

paces of high dimensionality, distances tend to equalize, that is they be-

ome less significant, which implies less relevant results. Something sim-

lar happens with SVM, since it tries to maximize the distances between

ata samples of different classes that are less significant with high di-

ensional data. Similarly, ANNs are affected by the existence of features

hat do not provide information or are redundant, so that a reduction in

imensionality where more significant features are provided would pro-

uce better results. Finally, in some case, decision trees would produce

normous structures based on non-significant features when processing

ata with a large number of characteristics. The problem of high di-

ensionality has been widely studied, and in Subsection 2.2 some of

he methods proposed to deal with it are detailed.

.2. Dimensionality reduction methods

The classification methods described in 2.1 are used for prediction

asks based on real data. These data often have high dimensionality, a
46
actor that affects their predictive performance. Therefore, different pro-

osals have emerged with the aim of mitigating its effects [11,12,53] .

he first solutions were based on the manual work of the experts who

elected the most important characteristics. However, this process was

oon automated and different methods of feature selection arose. Some

f the most widely used traditional algorithms are: LDA [54] , PCA

15,55] , ISOMAP [16] and LLE [17] . In recent years, new models have

ppeared for tackling this task. Advances in technology and the large

mount of data available have allowed DL algorithms to be developed.

n particular, AEs have shown good performance due to their structure

nd operation [28–30,56] .

One of the first methodologies that tackles the task of dimensionality

eduction is feature selection [13] . The process consists of selecting the

est subset of input variables. Moreover, feature selection treats each

nput attribute independently. However, it is well known that the infor-

ation provided by the variables treated together can be more useful

han if they are used independently. In order to solve this factor, other

ethodologies arose, such as feature extraction and feature fusion [57] .

The objective of the feature extraction methodology is to generate

he best representation of the input data [21] . This representation will

epend on the features of this data and the characteristics of the ma-

hine learning algorithm that will be used. To generate the new repre-

entation several techniques are used: basic transformations in the data,

ormalization, discretization and scaling. These types of methods can

e classified as supervised (LDA) [54] or non-supervised (PCA) [15,55] .

n a similar manner, the new feature space can be obtained through

inear combinations of input data, such as in PCA or LDA, or through

on-linear combinations, such as ISOMAP [16] or LLE [17] . In the sec-

nd case, the methods that apply nonlinear dimensionality reduction

echniques are known as manifold learning [58,59] . These methods have

een shown to be very effective in generating new feature spaces, but

hey have an extremely high computational cost.

As a result, the new term feature fusion has recently emerged [22–

4,32–34] , due to the need to process multimedia data, especially text,

mages and sound. The main objective of feature fusion algorithms is to

enerate new attributes by combining original variables. This way, less

elevant and redundant information is eliminated, making the task of

utomatic learning algorithms more effective [22] . In this context, the

se of different DL models has experienced an important rise, specifi-

ally regarding AEs. This type of model has shown great performance

n discovering manifolds between the data automatically, with a much

ower computational cost than traditional methods. Therefore, this study

ocuses on analyzing the behavior of different AE models when tackling

he task of dimensionality reduction. In Subsection 2.3 the AE concept

nd the different models used are presented.

.3. Autoencoder foundations

AEs are ANNs whose structure is symmetrical. The main objective

f this type of model is to reconstruct the input into the output. The

etwork learns using only the input attributes to carry out this process,

ithout the need for any labeling or prior processing; therefore, it is

bout unsupervised learning. The network can simply copy the input to

he output. To avoid this, certain restrictions must be verified [28,30] .

owadays, the most widely used term used to refer to these structures

s autoencoder, but they have also been referred to as diabolo networks

60] , autoassociative neural networks [61] and replicator neural net-

orks [62] .

The structure of the AEs allows a coded representation of the input

nformation to be obtained in the middle layer. From this coding, the

etwork is able to reconstruct the original input. In cases in which this

iddle layer is smaller than the input, a representation of lower dimen-

ionality can be obtained [29,56,63] . This fact means that AEs are being

idely used to reduce the size of the feature space. Specifically, these

odels combine variables to remove redundant and irrelevant informa-

ion, which is known as feature fusion.

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Fig. 1. Architecture of autoencoder with one hidden layer.

r

s

t

a

a

t

m

f

p

c

i

w

t

c

m

S

o

o

t

o

n

t

i

i

t

p

t

p

t

t

a

h

d

t

i

T

c

i

a

2

a

c

T

s

p

a

t

s

a

s

t

t

v

o

S

2

t

d

n

m

T

T

a

o

f

f

𝑧

𝑥

c

c

c

t

i

s

w

[

t

t

[

t

fi

p

p

In general terms, the basic structure of an AE is a feed-forward neu-

al network [47] without cycles, where information always flows in the

ame direction. This structure is very similar to the multilayer percep-

ron. The architecture of the AE is composed of a sequence of layers:

n input layer, a series of hidden layers and an output layer. The input

nd output layers must have the same dimension in order to reproduce

he input into the output through the network [64] . The middle layer

ust be smaller than the input when the objective is to perform feature

usion. This architecture is presented in Fig. 1 .

In Fig. 1 , the AE has 3 layers. The architecture is divided into two

arts. In the first part, the encoder is made up of the first two layers, in-

luding the middle encoding one. In the second part the decoder starts

n the middle layer and reaches the output layer. Each neuron connects

ith all of the previous layers, and these connections form weight ma-

rices denoted by W .

AEs can have as many layers as necessary, often located symmetri-

ally as seen in Fig. 1 . However, this representation corresponds to the

ost basic architecture; there are proposals that include modifications.

ome of these will be seen in Section 2.4 .

In this context, the output layer in the AE can be useful depending

n the task in hand. On the one hand, there are studies, such as this

ne, where this layer is not the central objective, since the purpose is

o extract information from the hidden layers. On the other hand, the

utput layer acquires great importance, for example, in cleaning the

oise of the input data.

According to the objectives set out in this paper the importance lies in

he information located in the hidden layers. Therefore the restrictions

ncluded in the network are fundamental, allowing the model to learn an

nternal representation of the input data. This new coding corresponds

o feature fusion with a higher level of representation. As a result, the

rocess eliminates redundant or unnecessary information. The benefit of

he model is that this code can be extracted and used in an independent

rocess [65] . According to the size of the middle layer, there are two

ypes of AEs:

• Undercomplete: The size of the middle layer is smaller than the in-

put. This type of architecture forces the network to learn a coded and

compressed representation of the input space. This model is used to

carry out feature fusion, where new higher level variables are gen-

erated.
• Overcomplete: The size of the middle layer is larger than the input

and output layer. This model can be limited by its structure to copy-

ing the entry through the network without learning anything useful.

So, it is necessary to include restrictions to avoid this. Therefore, the

architecture allows for a sparse representation of the input data.

This study focuses on undercomplete AEs, since the aim is to reduce

he dimensionality of the original data. This architecture is a very suit-

ble tool for performing feature fusion, obtaining new variables of a

igher level and lower dimensionality.

There are several AE models that can be used to tackle the task of

imensionality reduction. However, there are no data in the literature
47
hat facilitate the task of selecting the most appropriate method depend-

ng on the type of data or the type of classification algorithm to be used.

herefore, this paper aims to provide exhaustive experimentation to fa-

ilitate this task. With this aim, the performance of different AE models

s analyzed. In Section 2.4 the approaches used in this experimentation

re presented.

.4. Autoencoder models

The feature fusion task using AEs can be achieved using different

pproaches. In this study we focus on undercomplete models where the

oding produced in the intermediate layer is of lower dimensionality.

herefore, overcomplete models are not taken into account, due to their

tructure. However, these models are widely used to deal with other

roblems. For example, sparse AEs are suitable for speech [66] and im-

ge recognition [67] .

As already indicated, the objective of AEs is to find a codification of

he data by learning non-linear combinations of their features. In this

ection, different approaches that lead to a lower-dimensional space

re discussed. Specifically, four of the best-known AE models are de-

cribed: basic, contractive, denoising and robust. This study focuses on

hese four proposals with the aim of establishing a baseline study on

he use of AEs to reduce dimensionality. However, there are many other

ariants in the literature. In fact, new proposals for AEs arise continu-

usly. Some of these proposals are: Correspondence AEs [68] , AE Node

aliency [69] and AE With Invertible Functions [70] .

.4.1. Basic autoencoder

The main objective of the AE models analyzed in this section is to

ackle the task of dimensionality reduction on a wide set of datasets with

isparate characteristics. Hence, the model obtained will be able to map

ew examples onto the latent feature space. All AEs start from a basic

odel, called basic AE (BAE) [36] .

In the previous section the basic AE structure has been presented.

his consists of feed-forward ANN with symmetrical layer architecture.

he symmetry does not necessarily have to be reflected in the weights

nd activation functions.

The most basic AE, when there is only one hidden layer, is composed

f two weight matrices, W and W’, and two bias vectors, b and b’. There-

ore, where x is the input vector the functions of AE can be expressed as

ollows:

 = 𝑓 (𝑥) = 𝛾1 (𝑊 𝑥 + 𝑏) (1)

′ = 𝑔(𝑦) = 𝛾2 (𝑊

′𝑧 + 𝑏 ′) (2)

Eq. (1) corresponds to the compression function, from which an en-

oded input representation is obtained. Eq. (2) corresponds to the de-

oder part, where the AE reconstructs the input from the information

ontained in the hidden layer. Here, 𝛾1 and 𝛾2 are two activation func-

ions, which are usually nonlinear.

The objective function for AEs generally corresponds to a per-

nstance loss function. For example, a widely used metric is the mean

quare error (MSE). Similarly, the algorithms used to optimize the

eights and biases in these models are stochastic gradient descent (SGD)

71] and variants, such as RMSProp [72] or AdaGrad [73] .

The gradient descent technique consists of modifying the parame-

ers in order to minimize the objective function [74] . So, by applying

he back-propagation algorithm, the necessary gradients are computed

48] . Back-propagation starts by calculating terms of the last layers and

ransmits the value through the network.

In many cases, a regularization term is added to prevent the over-

tting of the model to the training data. The following models incor-

orate restrictions and mechanisms on basic AE in order to increase its

erformance.

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

2

t

a

(

t

f

e

c

d

2

i

r

H

o

e

o

m

t

[

0

v

d

c

e

2

p

h

f

r

n

t

p

e

t

i

3

f

o

a

e

s

m

3

A

e

d

v

T

W

w

A

c

s

a

u

t

o

s

t

s

E

A

w

d

b

A

n

c

.4.2. Contractive autoencoder

AEs are very sensitive to variations in the input data, and small per-

urbations could generate very different encodings. This is a drawback

nd motivates the appearance of the model known as contractive AE

CAE) [38] . This type of AE achieves local invariance to changes in the

raining instances and so it is able to identify lower-dimensional mani-

old structures more easily.

CAEs include a regularization term that allows them to stabilize the

ncodings in spite of disturbances in the input data. This new model

an generate instances from the learning performed, adding noise at

ifferent points and computing its coding [38] .

.4.3. Denoising autoencoder

Denoising AE (DAE) [37] introduces modifications to the basic model

n order to achieve greater robustness, that is, allowing the model to

econstruct the input by eliminating any noise that is present.

AEs have previously been applied to the noise elimination task [75] .

owever, this model has a broader objective, since it takes advantage

f noise to build a new feature space that is more resistant to corrupt

ntries. As such, the field of application is wider and the performance

f the AE increases.

The architecture of the DAE model is identical to that of the basic

odel. The fundamental modification is in the corruption of the en-

rance during the training phase. An example of this process is given in

37] , where a number of input variables are randomly chosen and set to

. However, the reconstruction is compared to the original unmodified

alues. Therefore, the AE training process will be adjusted in order to

etect the missing values.

DAE can have several hidden layers. Similarly, the training technique

an be adapted to other ways of corrupting the input data [76] , for

xample, additive Gaussian noise or salt-and-pepper noise.

.4.4. Robust autoencoder

Robust AEs (RAE) are networks trained to tolerate possible noise

resent in the training data [39] , just like DAE. However, this task is

andled in a different way. The alternative used is to modify the loss

unction used when training the network. At the time of minimizing the

econstruction error, changes are introduced that reduce the effects of

oise in the calculations performed.

Robust stacked AEs incorporate this idea with the aim of being more

olerant to input noise than basic models. To accomplish this, the pro-

osal in [77] uses an error function based on correntropy.

Correntropy allows us to measure the probability density that two

vents are similar. The outliers affect this measure to a lesser extent

han the MSE. Therefore, RAE attempts to maximize this measurement,

mplying greater resilience to noise.

. Experimental study

In order to analyze the improvements of tackling the task of feature

usion using AEs, an exhaustive experimental study has been carried

ut. In addition, this analysis compares different AE models with the

im of determining which of them offers better performance. Thus the

xperimentation performed follows the steps detailed bellow:

• Firstly, the different models of AEs are used to generate a new feature

space from that of the input data. For this, different AE architectures

are used in each case. In this way several subsets with different de-

grees of reduction are obtained from the original datasets. The mod-

els of AEs used are: basic, contractive, denoising and robust.
• Secondly, the classification with the different methods is carried

out. Each classification algorithm works with the different data sets

generated in the previous phase. In this way classifications are per-

formed for the different subsets of the same dataset. This process

allows us to establish comparisons between the AE models and ar-

chitectures used when generating reduced subsets of the input data.
The classifiers used are: kNN, MLP, SVM and C4.5.

48
In the following sections, the analysis of the experimentation is pre-

ented. Fundamentally, the objectives pursued are:

• Determine which structure of AEs offers better predictive perfor-

mance. For this purpose, classification results for the different con-

figurations are compared in Section 4 . Due to the large number of

results generated, this step is necessary in order to focus the subse-

quent analysis on just one architecture.
• Perform a comparison of the classification results obtained by the

different classifiers in Section 5 . The comparative data will be those

corresponding to the classification of the subsets obtained with the

four models of AEs with the configuration selected in Section 3 and

the classification of the original data without reduction of dimen-

sionality. The purposes of Section 5 are:

– Present, in Section 5.1 , the experimental framework of the clas-

sification algorithms used in this study.

– Analyze, by type of classifier, the performance of the different

models of AEs in Sections 5.2–5.5 .

– Establish a general analysis of the results supported by statistical

tests in Section 5.6 .

– Study the execution time of the classification algorithms consid-

ering the different AE architectures in Section 5.7 .
• Carry out a comparison of the AEs’ performance when tackling the

task of dimensionality reduction compared to the traditional meth-

ods outlined in Section 6 .
• Propose guidelines to facilitate the task of dimensionality reduction

using AEs in Section 7 .

In addition, Section 3.1 presents the framework used in the experi-

entation.

.1. Experimental framework

This study aims to analyze the performance of different models of

Es when dealing with the reduction of dimensionality. Similarly, the

xperimentation aims to determine the behavior of different classifiers

epending on the type of AE. For this, a wide range of datasets with

ery varied characteristics has been used. Their traits are presented in

able 1 , which also shows the origin of the dataset in the Ref column.

hen performing the executions, a 2 × 5 fold cross validation scheme

as applied.

The datasets described in Table 1 are those used by all models of

Es to establish a comparison based on a large data set with different

haracteristics. In addition, establishing a form of evaluation is neces-

ary in order to assess the predictive performance of different methods

nd models. In this case the area under the ROC curve (AUC) has been

sed. This metric offers a robust view of the predictive performance of

he models evaluated. That is to say, AUC provides a reliable overview

f the results, something that has not been obtained with other metrics

uch as Precision or Accuracy, which give a more partial view. AUC is

he probability that a classifier will rank a randomly chosen positive in-

tance higher than a randomly chosen negative one. AUC is given by the

q. (3) :

UC = ∫
−∞

∞
TPR (𝑇) FPR (𝑇) 𝑑𝑇 (3)

here TPR stands for the true positive rate and FPR is false positive rate.

In this study, the pROC package for R, which contains a set of tools for

isplaying and analyzing ROC curves, is used to calculate AUC for both

inary and multi-class datasets [87] . This package obtains multiclass

UC as defined by Hand and Till [88] .

Finally, two statistical tests are used in this study to verify the sig-

ificance of the results obtained. This will allow us to establish the con-

lusions associated with the study. The tests performed are:

• The Friedman test [89] is used to rank the different configurations.

In this way, the selection of the best architecture and model can be

carried out.

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 1

Characteristics of the datasets used in the experimentation.

Dataset Number of Type Field Ref

Samples Features Classes

arcene 900 10,000 2 Real Medical [78]

batch 13,910 128 6 Real Chemical [79]

coil2000 9822 85 2 Integer Social [80]

dota 102,944 116 2 Real Game [81]

drive 58,509 48 11 Real Motor [81]

facial 2964 301 2 Real Image [81]

fashionmnist 70,000 784 10 Integer Image [82]

gisette 13,500 5000 2 Integer Image [78]

hapt 10,929 561 12 Real Activity [83]

image 2310 19 7 Real Image [81]

isolet 7797 617 26 Real Image [84]

letter 20,000 16 26 Integer Image [81]

madelon 2000 500 2 Real Artificial [85]

mfeat 2000 649 10 Real Image [81]

microv1 360 1300 10 Real Biology [81]

microv2 571 1300 20 Real Biology [81]

mnist 70,000 784 10 Integer Image [86]

musk 6598 168 2 Integer Physical [81]

nomao 1970 118 2 Real Technology [81]

semeion 1593 256 10 Integer Image [81]

m

T

R

e

m

[

g

n

c

t

n

4

a

w

d

4

e

c

t

t

t

t

s

c

i

(

w

Table 2

Autoencoder architectures used in the experimentation.

Number of

layers

Number of neurons (% of total)

Input Hidden Output

ARQ_25 3 100 25 100

ARQ_50 3 100 50 100

ARQ_75 3 100 75 100

T

a

m

a

a

h

i

4

p

D

l

a

fi

T

f

b

s

A

s

m

• The Li post-hoc tests [90] for Friedman test are applied in order

to compare all the configurations and allow us to verify whether

there are significant differences between these results. The Li test is

a non-parametric method appropriate when the number of samples

is not very large and it is a good alternative for finding significant

differences [91] .

The equipment used to develop this set of executions is a cluster

ade up of 18 computers, with 2 CPUs (2.33 GHz) of 7 GB RAM each.

he cluster is mounted using Rocks 6.1.1, a cluster Linux distribution.

ocks 6.1.1 is based upon CentOS 6.5. Therefore, CentOS 6.5 is the op-

rating system included in each of the nodes of the cluster. The different

odels of AEs were coded in Python language, using the Keras library

92] . The classification methods used were programmed using R lan-

uage [93] and are detailed in Subsection 5.1 . Finally, it is important to

ote that during the executions of this study the cluster has been dedi-

ated exclusively to them, without any other type of work executed in

he system. In addition, two parallel tasks have been executed in each

ode, as each one has 2 CPUs.

. Autoencoders architectures analysis

The objective of this section is to study which structure of AEs offers

 better predictive performance. In this way, the subsequent analysis

ill focus on the best architecture obtained. Section 4.1 describes the

ifferent architectures used and Subsection 4.2 presents the results.

.1. Autoencoders architectures framework

In this subsection, the architectures used with the different AE mod-

ls to perform the feature fusion are presented. One of the fundamental

haracteristics of these models is that they have symmetrical architec-

ure where the number of neurons in the input layer is equal to that of

he output layer. In this work, AEs are used to reduce dimensionality,

herefore, the intermediate layer must have a lower dimensionality than

he input and output layers. In Table 2 , the different configurations are

hown.

To evaluate the different models, the same selection of several ar-

hitectures were used for all models of AEs. The architectures proposed

n Table 2 make a reduction in the number of original features of 75%

ARQ_75), 50% (ARQ_50) and 25% (ARQ_25), respectively. Thus, AEs

ill essentially have the following layers:
49
• Input layer: This part has as many neurons as the original dataset

has features.
• Hidden layer: The number of units is variable in each configuration

according to the reduction carried out.
• Output layer: Due to the symmetric architecture of AEs, this layer

has the same number of elements as the input.

As indicated above, the architectures used have a single hidden layer.

he objective is to make the evaluation of basic architectures to establish

 baseline study. However, AEs can be expanded with more layers while

aintaining their symmetrical structure. In this experimentation, the

rchitectures considered have a single hidden layer. The main reason is,

s has been shown in previous experiments [30] , that including more

idden layers in the form of stacked AEs does not imply an improvement

n predictive performance.

.2. Autoencoders architectures analysis

The main objective of this Section is to study which AE configuration

rovides a better predictive performance with the different classifiers.

ue to the large number of results generated, the objective is to estab-

ish one of the configurations in order to later perform a more detailed

nalysis of classifiers.

The visualization using plots of the results generated can provide a

rst approximation of their quality and of which models work better.

herefore, the first step is to graphically represent the results obtained

or the different configurations. Fig. 2 (a)–(c) present the results obtained

y compressing 25% (ARQ_25), 50% (ARQ_50) and 75% (ARQ_75), re-

pectively. The three plots show the aggregated results by configuration,

E model and classifier. The classifiers are represented by the different

trokes, while the vertices of the plot correspond to the different AE

odels.

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Fig. 2. Predictive performance (AUC) of the different autoencoder models and classification algorithms for each architecture.

Table 3

Average rankings of the different autoencoder architectures by classification method.

kNN SVM MLP C4.5

Architecture Ranking Architecture Ranking Architecture Ranking Architecture Ranking

ARQ_75 1.850 ARQ_75 2.037 ARQ_75 1.850 ARQ_75 1.825

ARQ_50 2.075 ARQ_50 2.050 ARQ_50 2.150 ARQ_50 2.300

ARQ_25 2.750 ARQ_25 2.662 ARQ_25 2.725 Plain 2.837

Plain 3.325 Plain 3.250 Plain 3.275 ARQ_25 3.037

p

o

c

a

g

u

t

c

w

c

o

d

w

i

m

o

m

t

t

m

f

a

i

t

S

p
Plots 2(a)–(c) show the results for the different configurations pro-

osed in this study. Each figure is a radar chart that represents the results

btained with the 4 models of AE and the model without performing

ompression. Similarly, there is a line for each classification algorithm

nd so, a global vision of the performance of the different models is

enerated. The representation is an aggregation of all the datasets

sed.

In general, RAE works better in all cases, since it can be observed

hat for all classification methods it tends to the maximum value. On the

ontrary, the worst results are obtained with BAE and with the model

ithout compression, which is expected since they are the less sophisti-

ated models and contain original data without processing, respectively.

Regarding the different classification methods, some patterns can be

bserved. On the one hand, for the kNN, SVM and MLP algorithms, the

ifferent models of AE improve in the three configurations on execution

ithout compression. On the other hand, C4.5 performs the worst, since
50
n some cases the execution without compression improves some of the

odels of AE used.

Once a global vision of the results obtained has been presented, the

bjective is to select the configuration with the best predictive perfor-

ance. Due to the large number of executions carried out, it is necessary

o perform a more detailed subsequent analysis.

To determine the best configuration, it is necessary to verify whether

here are significant differences between them. To do so, first the Fried-

an test [89] is applied. Average ranks obtained by applying this test

or AUC are shown in Table 3 . These rankings have been generated by

dding data from all datasets and AE models. In this case, the objective

s to select the best architecture, therefore it is not necessary to separate

he results by AE model. This more detailed analysis will be shown in

ection 5 .

As can be seen in Table 3 , the configuration that provides the best

redictive performance is that which reduces the number of features

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 4

Li post-hoc Friedman test for classification algorithms by autoencoder archi-

tecture.

ARQ_25 ARQ_50 ARQ_75 Plain

kNN ARQ_25 - - - 6.601E-03

ARQ_50 1.292E-03 - - 1.253E-09

ARQ_75 1.423E-05 1.703E-01 - 6.817E-13

Plain - - - -

SVM ARQ_25 - - - 7.571E-02

ARQ_50 5.229E-02 - - 8.464E-08

ARQ_75 4.311E-02 9.512E-01 - 5.837E-08

Plain - - - -

MLP ARQ_25 - - - 8.147E-03

ARQ_50 5.617E-03 - - 4.148E-08

ARQ_75 2.114E-05 1.416E-01 - 3.413E-12

Plain - - - -

C4.5 ARQ_25 - - - -

ARQ_50 4.497E-04 - - 1.242E-02

ARQ_75 4.236E-09 2.882E-02 - 1.047E-06

Plain 3.272E-01 - - -

t

t

t

t

i

p

t

L

o

t

t

a

t

C

r

e

t

5

m

t

a

F

s

b

s

o

t

w

f

e

a

a

c

5

t

m

i

t

d

t

t

e

i

c

f

t

m

5

d

s

i

p

C

w

c

c

c

d

b

c

c

s

d

t

r

o

v

g

a

5

s

t

e

b

d

t

f

b
o 75% (ARQ_75) of the total. In addition, the worst results are ob-

ained with the execution without compression, except for C4.5 where

he worst results are obtained with the configuration ARQ_25 (25% of

he total).

To select a configuration based on solid results, it is necessary to ver-

fy whether there are statistically significant differences. Therefore, Li

ost-hoc tests [90] for Friedman test are applied in order to compare all

he configurations. Table 4 shows the different p-values obtained by the

i test. In this table, the p-values are represented when the architecture

f the row has a better ranking than the architecture of the column.

As can be seen in Table 4 , there are significant differences between

he different configurations proposed in this study if we set the p-value

hreshold to the usual range [0.05, 0.1]. The only cases where there

re no clearly significant differences is for SVM, between the models

hat reduce to 50% (ARQ_50) and 75% (ARQ_75) of the total, and with

4.5, between the models that reduce to 25% and the model without

eduction. However, the results presented in this section allow us to

stablish a solid base for selecting the architecture that reduces 75% of

he total as the best in terms of predictive performance.

. Classification performance analysis

Once the configuration that generates a better predictive perfor-

ance in classification has been selected in Section 4 , the next objec-

ive is to perform a more detailed analysis of the different AE models

nd how they affect the classification methods proposed in this study.

or this, Section 5.1 presents the framework used for the different clas-

ification algorithms and Sections 5.2 –5.5 present the results obtained

y kNN, SVM, MLP and C4.5, respectively. In these subsections the re-

ults are presented in greater detail, showing the values of AUC for each

ne of the datasets and for each AE model. The different tables present

he performance of the four classifiers when using the original dataset

ithout reduction and the subsets that were generated after carrying out

usion features with the AE models. In all of the tables, the best result for

ach dataset is highlighted in bold. In addition, Section 5.6 establishes

 general analysis where statistical tests are used to support the results

nd Section 5.7 studies the execution time of the different architectures

onsidered.

.1. Classification algorithm framework

The main objective of this paper is to carry out an exhaustive study

hat analyzes the performance of AE models in handling the task of di-

ensionality reduction. This experimentation allows us to offer useful

nformation when using these models according to the characteristics of
51
he data and the classification algorithms that are used. In Section 3.1 ,

ata sets with different traits have been described. In this Subsection,

he classification algorithms used, their origin and their main parame-

ers are presented.

The classification algorithms are implemented in R [93] , using in

ach case a specific package of this platform. Another important aspect

s the parameterization of the classification algorithms. Bellow, the main

haracteristics of the different algorithms are shown:

• For the kNN algorithm, the kknn package has been used [94] . Simi-

larly, the value of parameter k is 5, since it is the one recommended

in the literature [30] .
• The SVM algorithm has been obtained from the e1071 package [95] .

The parameters used are those established by default in the package

documentation including radial kernel.
• To perform the classification with the MLP algorithm, caret and

RSNNS packages were used [96,97] . The structure of the network

and the number of iterations are determined by the default parame-

ters of the package.
• The C4.5 algorithm was provided by the RWeka package [98] . The

default parameters were used in the implementation of C4.5.

The parameters used in four algorithms are those provided by default

or the different algorithms, since the objective is to assess the predic-

ive performance obtained by reducing with AEs without adjusting the

ethods in any other way.

.2. kNN

Table 5 shows the results obtained using the kNN algorithm. These

ata show that in most cases the best results are obtained with data

ets reduced by AEs. Specifically, in 10 out of 20 cases the best result

s obtained with RAE, in 4 out of 20 datasets DAE generates the best

redictive performance and in 5 out of 20 the best data is obtained by

AE. However, there are 2 cases where the best results are obtained

ith the original dataset.

These results show the improvement of predictive performance oc-

urs when reducing dimensionality using AEs. The justification for this

an be found in the functional scheme of the IBL algorithms, specifi-

ally, kNN. The behavior of this type of method is affected by the high

imensionality of the input space, because in this scenario the distances

etween the instances tend to equalize. Therefore, the loss of signifi-

ance of this factor leads to a fall in predictive performance [99] . In this

ontext, AEs are incorporated. The objective is to reduce the dimen-

ionality of the input data using several AE models, aiming to obtain

istances between the examples that are more significant. AEs carry out

he fusion features, where new spaces are generated by adding the most

elevant information from the original data.

Another aspect to note is that for 18 datasets the best results were

btained with sophisticated AE models (CAE, DAE, RAE), which is ob-

ious since they incorporate improvements over BAE. Therefore, the

enerated feature fusion contains more and more relevant information

nd is more useful when carrying out the classification.

.3. SVM

In Table 6 the classification results of the SVM algorithm are pre-

ented. The trend of the previous algorithm is maintained according to

he data shown. The best results are obtained by classifying subsets gen-

rated by AEs in most cases. In more detail, the RAE model shows the

est performance in 8 out of 20 cases, DAE works best in 5 out of 20

atasets and CAE generates better results in 5 out of 20 cases. Finally,

here are no improvements for the other 3 datasets, where the best per-

ormance is obtained with the plain data.

The behavior of the SVM algorithm when decreasing the input space

y means of AEs clearly improves with respect to the results with the

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 5

kNN results for plain data and autoencoder models (AUC).

Dataset Plain Data BAE CAE DAE RAE

arcene 0.693 ± 0.003 0.591 ± 0.011 0.605 ± 0.015 0.672 ± 0.005 0.743 ± 0.008

batch 0.870 ± 0.005 0.877 ± 0.003 0.900 ± 0.010 0.990 ± 0.001 0.992 ± 0.001

coil2000 0.546 ± 0.003 0.543 ± 0.002 0.554 ± 0.004 0.554 ± 0.004 0.545 ± 0.003

dota 0.416 ± 0.021 0.515 ± 0.002 0.519 ± 0.000 0.522 ± 0.003 0.516 ± 0.002

drive 0.800 ± 0.009 0.819 ± 0.011 0.877 ± 0.005 0.846 ± 0.006 0.873 ± 0.004

facial 0.795 ± 0.011 0.668 ± 0.005 0.690 ± 0.006 0.685 ± 0.003 0.697 ± 0.002

fashionmnist 0.906 ± 0.004 0.914 ± 0.003 0.912 ± 0.001 0.920 ± 0.003 0.922 ± 0.001

gisette 0.824 ± 0.005 0.879 ± 0.009 0.897 ± 0.004 0.923 ± 0.002 0.900 ± 0.004

hapt 0.903 ± 0.005 0.918 ± 0.004 0.876 ± 0.005 0.931 ± 0.003 0.939 ± 0.002

image 0.929 ± 0.005 0.952 ± 0.000 0.952 ± 0.002 0.950 ± 0.001 0.958 ± 0.003

isolet 0.943 ± 0.003 0.942 ± 0.004 0.974 ± 0.001 0.968 ± 0.002 0.976 ± 0.002

letter 0.973 ± 0.015 0.818 ± 0.007 0.925 ± 0.012 0.923 ± 0.006 0.947 ± 0.005

madelon 0.526 ± 0.004 0.550 ± 0.003 0.566 ± 0.006 0.591 ± 0.003 0.618 ± 0.005

mfeat 0.703 ± 0.004 0.982 ± 0.002 0.986 ± 0.002 0.984 ± 0.001 0.984 ± 0.001

microv1 0.920 ± 0.005 0.933 ± 0.002 0.922 ± 0.003 0.939 ± 0.005 0.929 ± 0.004

microv2 0.883 ± 0.006 0.896 ± 0.003 0.955 ± 0.002 0.932 ± 0.005 0.954 ± 0.003

mnist 0.965 ± 0.003 0.958 ± 0.001 0.969 ± 0.000 0.975 ± 0.001 0.979 ± 0.000

musk 0.829 ± 0.005 0.914 ± 0.004 0.940 ± 0.002 0.941 ± 0.001 0.947 ± 0.002

nomao 0.891 ± 0.001 0.891 ± 0.003 0.914 ± 0.005 0.904 ± 0.002 0.905 ± 0.003

semeion 0.927 ± 0.003 0.929 ± 0.002 0.907 ± 0.004 0.940 ± 0.001 0.942 ± 0.000

Table 6

SVM results for plain data and autoencoder models (AUC).

Dataset Plain Data BAE CAE DAE RAE

arcene 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.632 ± 0.005 0.500 ± 0.000

batch 0.923 ± 0.003 0.933 ± 0.005 0.924 ± 0.004 0.980 ± 0.002 0.985 ± 0.002

coil2000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000

dota 0.509 ± 0.002 0.500 ± 0.000 0.553 ± 0.001 0.550 ± 0.002 0.534 ± 0.005

drive 0.885 ± 0.005 0.934 ± 0.007 0.985 ± 0.003 0.941 ± 0.002 0.863 ± 0.004

facial 0.802 ± 0.003 0.697 ± 0.006 0.701 ± 0.004 0.713 ± 0.002 0.714 ± 0.005

fashionmnist 0.932 ± 0.002 0.933 ± 0.005 0.938 ± 0.003 0.940 ± 0.000 0.942 ± 0.001

gisette 0.803 ± 0.008 0.821 ± 0.007 0.816 ± 0.001 0.969 ± 0.003 0.955 ± 0.006

hapt 0.900 ± 0.001 0.895 ± 0.001 0.871 ± 0.003 0.889 ± 0.001 0.886 ± 0.004

image 0.846 ± 0.004 0.853 ± 0.003 0.886 ± 0.001 0.877 ± 0.005 0.910 ± 0.002

isolet 0.954 ± 0.003 0.968 ± 0.002 0.971 ± 0.002 0.975 ± 0.001 0.976 ± 0.001

letter 0.966 ± 0.003 0.790 ± 0.006 0.841 ± 0.004 0.828 ± 0.004 0.879 ± 0.005

madelon 0.569 ± 0.004 0.569 ± 0.004 0.580 ± 0.002 0.591 ± 0.001 0.587 ± 0.000

mfeat 0.970 ± 0.002 0.982 ± 0.001 0.985 ± 0.002 0.985 ± 0.001 0.985 ± 0.001

microv1 0.500 ± 0.000 0.774 ± 0.004 0.796 ± 0.003 0.918 ± 0.005 0.786 ± 0.002

microv2 0.500 ± 0.000 0.849 ± 0.002 0.916 ± 0.003 0.871 ± 0.001 0.881 ± 0.001

mnist 0.981 ± 0.002 0.984 ± 0.001 0.984 ± 0.001 0.985 ± 0.001 0.987 ± 0.000

musk 0.838 ± 0.004 0.893 ± 0.004 0.939 ± 0.005 0.948 ± 0.006 0.964 ± 0.003

nomao 0.914 ± 0.001 0.915 ± 0.001 0.935 ± 0.000 0.924 ± 0.002 0.932 ± 0.001

semeion 0.891 ± 0.000 0.913 ± 0.002 0.957 ± 0.003 0.957 ± 0.001 0.962 ± 0.001

p

i

t

o

p

o

c

i

t

t

e

f

w

5

i

p

A

r

S

o

6

o

u

s

n

c

p

c

d

t

f

p

s

e

i

d
lain data. The philosophy of the SVM algorithm is based on the max-

mization of distances between data samples of different classes [6] . In

his sense, the distance between the instances tends to equalize in spaces

f high dimensionality. This leads to a considerable loss of predictive

erformance and justifies the use of methods to mitigate its effects [10] .

In this study, the use of AEs allows the generation of a new space

f features where the distances are more significant. During the pro-

ess, different AE models are trained to discard irrelevant or redundant

nformation. In this new scenario the SVM algorithm improves the dis-

ribution of instances, generating better predictive results.

The results for SVM confirm that more complex AE models offer bet-

er results in 17 datasets. These results provide a solid basis for consid-

ring the use of AEs to pre-process the data when classification is per-

ormed using SVM-based algorithms. This is especially recommended

hen the data has high-dimensional input space.

.4. MLP

The classification results generated by the MLP algorithm are shown

n Table 7 . These data reflect that the predictive performance is im-

roved by reducing the dimensionality using the different models of

Es. This continues to confirm the trend marked by the previous algo-
52
ithms. In this case, all datasets show improvements when applying AEs.

pecifically, RAE generates the best results in 10 out of 20 cases, DAE

btains the best predictive performance in 2 out of 20 datasets, CAE in

 out of 20 sets and BAE is the best model in the 2 remaining cases.

The results shown in Table 7 confirm that the predictive performance

f a basic neural network (MLP) improves by reducing the input space

sing different models of AEs. The MLP algorithm corresponds to a ba-

ic neural network whose objective is to learn to predict the class of a

ew instance from a series of input instances. During the training pro-

ess, the network adjusts its parameters in order to generate the smallest

ossible error in the training data [47] . The information of each of the

lasses that the network generalizes is worse if the dimensionality of the

ata increases, so it is necessary to use different methods that improve

his.

The AEs used in this experimentation are also ANNs. Therefore, the

eature fusion produced generates information that follows a ”natural ”

rocess when used as input to another ANN. In fact, this process is very

imilar to classification schemes based on DL, which do not use any

xternal models [65] . ANN convention allows us to extract higher-level

nformation that improves the predictive performance of MLP.

Following the trend marked by previous algorithms, MLP results in-

icate that complex AE models offer the best performance in 18 datasets.

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 7

MLP results for plain data and autoencoder models (AUC).

Dataset Plain Data BAE CAE DAE RAE

arcene 0.522 ± 0.001 0.492 ± 0.003 0.465 ± 0.005 0.500 ± 0.000 0.523 ± 0.001

batch 0.914 ± 0.003 0.920 ± 0.005 0.929 ± 0.002 0.920 ± 0.003 0.920 ± 0.002

coil2000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000

dota 0.500 ± 0.000 0.504 ± 0.001 0.529 ± 0.003 0.500 ± 0.000 0.547 ± 0.005

drive 0.698 ± 0.008 0.740 ± 0.011 0.964 ± 0.004 0.680 ± 0.010 0.812 ± 0.006

facial 0.520 ± 0.009 0.699 ± 0.005 0.706 ± 0.003 0.701 ± 0.004 0.718 ± 0.003

fashionmnist 0.901 ± 0.001 0.908 ± 0.004 0.915 ± 0.001 0.911 ± 0.004 0.917 ± 0.002

gisette 0.605 ± 0.004 0.755 ± 0.003 0.591 ± 0.002 0.627 ± 0.003 0.614 ± 0.003

hapt 0.839 ± 0.005 0.855 ± 0.002 0.838 ± 0.002 0.850 ± 0.001 0.841 ± 0.003

image 0.703 ± 0.005 0.823 ± 0.004 0.884 ± 0.003 0.872 ± 0.003 0.898 ± 0.001

isolet 0.827 ± 0.008 0.786 ± 0.005 0.850 ± 0.006 0.842 ± 0.007 0.880 ± 0.006

letter 0.734 ± 0.003 0.701 ± 0.005 0.749 ± 0.003 0.740 ± 0.002 0.742 ± 0.005

madelon 0.500 ± 0.000 0.556 ± 0.002 0.590 ± 0.001 0.637 ± 0.004 0.631 ± 0.002

mfeat 0.500 ± 0.000 0.932 ± 0.003 0.938 ± 0.003 0.968 ± 0.001 0.976 ± 0.000

microv1 0.678 ± 0.005 0.692 ± 0.006 0.713 ± 0.004 0.690 ± 0.005 0.714 ± 0.003

microv2 0.708 ± 0.006 0.500 ± 0.000 0.747 ± 0.002 0.725 ± 0.004 0.742 ± 0.003

mnist 0.872 ± 0.003 0.891 ± 0.004 0.896 ± 0.000 0.905 ± 0.002 0.909 ± 0.001

musk 0.850 ± 0.003 0.953 ± 0.004 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000

nomao 0.901 ± 0.002 0.904 ± 0.002 0.923 ± 0.003 0.530 ± 0.011 0.913 ± 0.003

semeion 0.827 ± 0.003 0.817 ± 0.008 0.860 ± 0.005 0.756 ± 0.002 0.793 ± 0.006

Table 8

C4.5 results for plain data and autoencoder models (AUC).

Dataset Plain Data BAE CAE DAE RAE

arcene 0.655 ± 0.005 0.679 ± 0.009 0.565 ± 0.006 0.678 ± 0.003 0.730 ± 0.004

batch 0.921 ± 0.003 0.941 ± 0.002 0.911 ± 0.003 0.982 ± 0.000 0.983 ± 0.001

coil2000 0.503 ± 0.002 0.509 ± 0.003 0.521 ± 0.001 0.516 ± 0.002 0.513 ± 0.004

dota 0.462 ± 0.004 0.498 ± 0.006 0.548 ± 0.003 0.539 ± 0.002 0.521 ± 0.005

drive 0.869 ± 0.003 0.862 ± 0.006 0.944 ± 0.003 0.850 ± 0.004 0.867 ± 0.005

facial 0.789 ± 0.011 0.629 ± 0.009 0.660 ± 0.005 0.655 ± 0.013 0.683 ± 0.008

fashionmnist 0.877 ± 0.002 0.875 ± 0.000 0.883 ± 0.003 0.888 ± 0.001 0.890 ± 0.000

gisette 0.657 ± 0.005 0.758 ± 0.008 0.714 ± 0.003 0.743 ± 0.005 0.790 ± 0.006

hapt 0.798 ± 0.001 0.791 ± 0.002 0.800 ± 0.001 0.799 ± 0.000 0.799 ± 0.001

image 0.832 ± 0.002 0.753 ± 0.001 0.862 ± 0.003 0.859 ± 0.003 0.927 ± 0.001

isolet 0.870 ± 0.004 0.853 ± 0.002 0.888 ± 0.003 0.874 ± 0.003 0.867 ± 0.004

letter 0.922 ± 0.005 0.742 ± 0.008 0.813 ± 0.012 0.811 ± 0.008 0.820 ± 0.004

madelon 0.520 ± 0.004 0.515 ± 0.002 0.557 ± 0.006 0.524 ± 0.003 0.565 ± 0.002

mfeat 0.911 ± 0.003 0.922 ± 0.003 0.930 ± 0.001 0.913 ± 0.004 0.941 ± 0.002

microv1 0.838 ± 0.004 0.851 ± 0.002 0.871 ± 0.002 0.849 ± 0.001 0.937 ± 0.003

microv2 0.736 ± 0.005 0.746 ± 0.003 0.867 ± 0.006 0.845 ± 0.002 0.873 ± 0.003

mnist 0.965 ± 0.005 0.958 ± 0.004 0.969 ± 0.002 0.975 ± 0.001 0.979 ± 0.002

musk 0.800 ± 0.002 0.805 ± 0.000 0.880 ± 0.002 0.883 ± 0.001 0.885 ± 0.000

nomao 0.886 ± 0.002 0.877 ± 0.001 0.885 ± 0.001 0.877 ± 0.003 0.882 ± 0.002

semeion 0.716 ± 0.003 0.606 ± 0.005 0.727 ± 0.002 0.739 ± 0.005 0.759 ± 0.001

I

t

5

a

p

m

g

p

o

b

o

o

A

b

t

r

h

i

d

f

b

f

p

m

T

o

o

p

5

d

s

t

t

t is important to note that in all cases the best results are obtained with

he use of AEs.

.5. C4.5

In this section, the classification results obtained for the C4.5 method

re presented in Table 8 . The C4.5 algorithm behaves similarly to the

revious algorithms while using the new input space produced by AE

odels. On the one hand, the best results are obtained with the data

enerated by the AEs in most cases. Specifically, RAE generates the best

erformance in 12 out of 20 cases and CAE in 5 out of 20 datasets. On the

ther hand, in 3 cases the results obtained with the original data are the

est. Unlike the previous algorithms, in this case the DAE model never

btains the best result. However, the performance of DAE is close to that

btained with RAE in many cases. This fact is best seen in Fig. 2 (c).

The predictive performance of the C4.5 algorithm is improved when

Es are used. Higher-level feature generation positively affects tree-

ased algorithms. The methodology of the C4.5 algorithm is based on

he analysis of the attributes that provide more information to sepa-

ate the instances in classes [8] . In a high dimensionality space, the

igh number of features prevents this type of algorithms from select-
53
ng attributes that provide little information. For this reason, the use of

imensionality reduction methods is recommended.

The process followed in this study allows information to be merged

rom different features using AEs and generating new attributes by com-

ining the originals. In this new scenario, the C4.5 algorithm has new

eatures that contain more relevant information; therefore, the divisions

erformed are better and the predictive performance improves.

For C4.5, the results follow the line of the previous algorithms. The

ost sophisticated AE models generate the best predictive performance.

hese results justify the use of AEs to reduce dimensionality as a previ-

us phase to that using tree-based algorithms, such as C4.5. The fusion

f features allows for the generation of more relevant attributes that

rovide more useful information.

.6. Results analysis

Once the results for each of the classification algorithms with the

ifferent AE models have been presented, the objective is to perform

tatistical tests that support the conclusions reached. This step is essen-

ial in order to confirm the results obtained and the differences between

he different models.

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 9

Average rankings of the different autoencoder models by classification method.

kNN SVM MLP C4.5

AE model Ranking AE model Ranking AE model Ranking AE model Ranking

RAE 1.750 RAE 2.025 RAE 1.750 RAE 1.700

DAE 2.400 DAE 2.200 CAE 2.400 CAE 2.450

CAE 2.700 CAE 2.850 DAE 3.100 DAE 3.000

BAE 4.000 BAE 3.850 BAE 3.500 Plain 3.800

Plain 4.150 Plain 4.075 Plain 4.250 BAE 4.050

Table 10

Li post-hoc Friedman test for classification algorithm by autoencoder model.

BAE CAE DAE RAE Plain

kNN BAE - - - - 7.642E-01

CAE 3.803E-02 - - - 1.558E-02

DAE 5.794E-03 6.993E-01 - - 1.969E-03

RAE 2.881E-05 1.958E-01 4.508E-01 - 6.728E-06

Plain - - - - -

SVM BAE - - - - 7.046E-01

CAE 1.426E-01 - - - 4.961E-02

DAE 3.521E-03 4.143E-01 - - 6.457E-04

RAE 9.573E-04 2.655E-01 7.263E-01 - 1.509E-04

Plain - - - - -

MLP BAE - - - - 1.882E-01

CAE 4.603E-02 - 1.891E-01 - 3.739E-04

DAE 4.237E-01 - - - 3.588E-02

RAE 8.067E-04 2.514E-01 1.189E-02 - 9.948E-07

Plain - - - - -

C4.5 BAE - - - - -

CAE 3.576E-03 - 4.147E-01 - 1.779E-02

DAE 8.534E-02 - - - 2.225E-01

RAE 6.794E-06 2.586E-01 2.376E-02 - 6.969E-05

Plain 6.171E-01 - - - -

t

t

m

t

m

F

s

p

a

t

w

m

s

o

t

o

r

t

p

o

m

g

r

a

m

a

b

o

f

e

t

5

f

t

T

t

s

d

e

f

b

l

w

c

c

m

m

v

p

e

T

c
To support the results obtained, it is necessary to check whether

here are significant differences between the models. The fundamen-

al objective is to check the differences between the most sophisticated

odels and the plain data, since the previous results determined that

hese cases were those that significantly improved predictive perfor-

ance. To do this, first average ranks are obtained by applying the

riedman test [89] . The rankings for each classification algorithm are

hown in Table 9 .

Table 9 shows that for the four classification algorithms the best

redictive performance is obtained with RAE. The DAE and CAE models

re in second and third place, alternating their position according to

he classification method. In addition, the worst results are obtained

ith the original data, except for C4.5, which is obtained with the BAE

odel. These rankings confirm the conclusions drawn in the previous

ubsections where it was indicated that the most sophisticated models

ffered better performance in most cases.

However, the previous rankings must be confirmed by statistical tests

hat verify that there are significant differences. This is necessary in

rder to be able to draw conclusions based on solid results. For this

eason, the Li post-hoc [90] for Friedman test is carried out, comparing
Table 11

Average rankings considering execution time of the diff

method.

kNN SVM M

Architecture Ranking Architecture Ranking A

ARQ_25 1.031 ARQ_25 1.025 A

ARQ_50 2.056 ARQ_50 2.075 A

ARQ_75 2.912 ARQ_75 3.031 A

Plain 4.000 Plain 3.868 P

54
he different models with each other. Table 10 presents the different

-values obtained with the Li test for the four classification algorithms.

Table 10 shows that there are significant differences between most

f the comparisons between the different models used in this experi-

ent, setting the p-value threshold to the usual range [0.05, 0.1]. In

eneral, the most sophisticated models present clear differences with

espect to the BAE model and the model with plain data. The RAE, DAE

nd CAE models do not always have significant differences, since each

odel presents better results for some of the datasets. Similarly, there

re no significant differences between the plain models and the most

asic, since they are generally surpassed by more sophisticated models.

These results confirm that the more sophisticated AE models improve

n the predictive performance obtained by the plain model using the

our selected classification algorithms. There are no significant differ-

nces among the sophisticated models, although the rankings indicate

hat the RAE model works better.

.7. Running time analysis

Once each of the classification algorithms has been analyzed in detail

rom a predictive performance perspective, an analysis of the execution

ime of the different configurations for each algorithm is carried out.

he objective of this subsection is to verify the time improvements in

he configurations as the size of the output space is reduced by AEs.

First, it is necessary to clarify the execution time studied in this Sub-

ection. Hence, the following analysis only considers the time of the

ifferent classifiers. The training and compression time of the AEs mod-

ls is not taken into account, since this process is performed only once

or each model and architecture, generating a subset that can be used

y any classifier in later stages. The reason for this approach is to high-

ight the performance improvement in terms of execution time obtained

hen classifying data of lower dimensionality. Thus the analysis is fo-

used on studying the times grouped by the different architectures and

lassification algorithms.

Table 11 shows a series of rankings obtained after applying the Fried-

an test [89] for execution time. The data of all the datasets and AE

odels have been grouped, since the main interest in this section is to

erify the time differences of each configuration. In addition, it is im-

ortant to indicate that the times considered are averages for all the

xecutions performed considering the 2x5 fold cross validation scheme.

hese averages have been used to develop the rankings presented.

As can be seen in Table 11 , the best performance with respect to exe-

ution time is obtained with the configuration that reduces the number
erent autoencoder architecture by classification

LP C4.5

rchitecture Ranking Architecture Ranking

RQ_25 1.012 ARQ_25 1.037

RQ_50 2.000 ARQ_50 2.068

RQ_75 3.012 ARQ_75 2.981

lain 3.975 Plain 3.912

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 12

Li post-hoc Friedman test for running time results by autoencoder archi-

tecture.

ARQ_25 ARQ_50 ARQ_75 Plain

kNN ARQ_25 - 5.128E-07 0.000E + 00 0.000E + 00

ARQ_50 - - 2.732E-05 0.000E + 00

ARQ_75 - - - 9.949E-08

Plain - - - -

SVM ARQ_25 - 2.691E-07 0.000E + 00 0.000E + 00

ARQ_50 - - 2.805E-06 0.000E + 00

ARQ_75 - - - 4.080E-05

Plain - - - -

MLP ARQ_25 - 1.313E-06 0.000E + 00 0.000E + 00

ARQ_50 - - 7.041E-06 0.000E + 00

ARQ_75 - - - 2.414E-06

Plain - - - -

C4.5 ARQ_25 - 4.370E-07 0.000E + 00 0.000E + 00

ARQ_50 - - 7.810E-06 0.000E + 00

ARQ_75 - - - 5.063E-06

Plain - - - -

o

n

t

t

s

s

T

t

i

T

s

t

i

d

t

u

p

6

o

m

g

a

o

I

a

b

t

a

f

S

a

R

l

t

S

m

a

T

d

d

o

o

b

d

i

b

t

T

o

m

t

r

c

i

d

t

t

A

v

A

a

s

f

i

p

a

s

i

v

i

t

7

f

t

s

a

o

t

t

o

a

f features to 25% of the total for all the algorithms. In a similar man-

er, the execution time increases as compression decreases. In this way,

he worst results are obtained with the plain model, that is the model

hat does not use AEs to reduce dimensionality.

Finally, it is necessary to determine whether there are statistically

ignificant differences in order to establish solid and well-founded re-

ults. To this end, Li post-hoc tests [90] for the Friedman test are applied.

able 12 presents the different p-values generated using the Li test.

The results obtained from the Li test, shown in Table 12 , show that

here are significant differences between the configurations considered

n this study, setting the p-value threshold to the usual range [0.05, 0.1].

hese differences are given in all cases compared.

Therefore, the fact that the execution time decreases as the compres-

ion of the data increases is confirmed by solid results. In conclusion,

he use of AEs to reduce dimensionality entails a considerable reduction

n terms of execution time. Thus, the selection of the architecture may

epend on the relevance of the execution time in the problem in ques-

ion. If it is important to reduce the time, an architecture with fewer

nits in the hidden layer can be selected, although this implies lower

redictive performance.

. Autoencoders vs classical feature extraction techniques

Finally, the objective of this section is to assess the competitiveness

f AE models as compared against traditional dimensionality reduction

ethods. Specifically, four of the most well-known and widely-used al-

orithms have been selected, PCA, LDA, ISOMAP and LLE. To do so,

 comparison has been made between the most sophisticated models

f AE (DAE, CAE and RAE) and the results obtained with PCA, LDA,

SOMAP and LLE on the same datasets. The configuration selected in

ll cases corresponds to that established in Section 4.2 and provides the

est performance. It is important for the number of features obtained

hrough the different methods to be the same in order to make a reli-

ble comparison. Similarly, this contrast has been made considering the

our classification algorithms used in the experimentation.

Tables 13 –16 present the classification results of the algorithms kNN,

VM, MLP and C4.5, respectively. Each table contains the data obtained

fter applying the 7 methods of dimensionality reduction: CAE, DAE,

AE, PCA, LDA, ISOMAP and LLE. In each case, the best result is high-

ighted in bold.

Observing the results presented in Tables 13 –16 , it can be seen that

he best results are obtained with the AE models for most of the cases.

pecifically, for kNN there are only three datasets (arcene, microv1,

usk) where the best result is obtained with traditional algorithms and

nother dataset (mfeat) where CAE and ISOMAP have the same result.
55
he SVM and MLP algorithms show similar behavior, there are two

atasets (arcene, microv1) where the best results are obtained with tra-

itional algorithms and another dataset (coil2000) where all the results

btained are similar. Finally, considering the C4.5 algorithm, it can be

bserved that there are three datasets (arcene, drive, madelon) where the

est predictive performance is obtained from the data generated by tra-

itional dimensionality reduction algorithms. Therefore, a general trend

n all classification algorithms can be observed that indicates that AE-

ased methods work better than LDA, PCA, ISOMAP and LLE.

However, it is necessary to confirm that these differences are sta-

istically significant. To do so, the Friedman test is applied first [89] .

he average rankings obtained are presented in Table 17 . Then, a series

f performance classifications of the different dimensionality reduction

ethods are generated.

The different rankings presented in 17 show that the best models are

hose based on AEs, while the traditional algorithms generate the worst

esults from an overall point of view. This trend is maintained in all the

lassification algorithms used in the experiment.

The second step when verifying the differences between the models

s to verify whether there are significant differences or not. In order to

o so, Li post-hoc tests [90] for the Friedman test are used to compare

he different models. Table 18 presents the p-values obtained with the Li

est.

Table 18 shows that there are significant differences between most

E models with traditional models in the cases considered, setting the p-

alue threshold to the usual range [0.05, 0.1]. However, there are some

E models that do not show significant differences with LDA, ISOMAP

nd LLE in some classification algorithms. Nevertheless, the RAE model

hows significant differences with LDA, PCA, ISOMAP and LLE in the

our classification algorithms considered. This confirms the trend that

ndicates that the RAE model produces the best results from an overall

oint of view.

In summary, the data presented in this section show that dimension-

lity reduction models based on AEs generate a predictive performance

uperior to traditional models such as LDA, PCA ISOMAP and LLE. This

s mainly due to the fact that models based on AEs generate more rele-

ant features and provide the classification algorithms with more useful

nformation. This allows us to consider this type of model as an option

o take into account when tackling this task.

. General guidelines on the use of autoencoder models

In the previous sections an exhaustive experimentation on the per-

ormance of several classifiers with data reduced using AE models and

he different conclusions reached in each case have been presented. This

ection aims to analyze in more detail the relationship between the char-

cteristics of the datasets and the results obtained. As a result, a series

f guidelines are presented that allow the most appropriate AE model

o be selected according to the classification algorithm and the traits of

he data specific to each problem. To this end, the most relevant rec-

mmendation for each algorithm is presented in the following list. In

ddition, Table 19 presents a summary of the main ideas.

KNN:

• For a dataset with a very high dimensionality, the best results are ob-

tained with DAE and RAE models. Therefore, we recommend using

them for datasets with more than 1000 features.
• The most recommended model when using datasets with a number

of features between 500 and 1000 is RAE. However, CAE model also

offers good results in certain cases.
• If datasets have between 100 and 500 features, RAE model generally

performs well. Similarly, DAE and CAE models obtain good results

with binary datasets.
• The models that generate the best predictive performance for

datasets with less than 100 features are RAE and CAE.

SVM:

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 13

kNN classification results of CAE, DAE, RAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset CAE DAE RAE PCA LDA ISOMAP LLE

arcene 0.605 ± 0.015 0.672 ± 0.005 0.743 ± 0.008 0.661 ± 0.006 0.654 ± 0.009 0.738 ± 0.003 0.747 ± 0.005

batch 0.900 ± 0.010 0.990 ± 0.001 0.992 ± 0.001 0.861 ± 0.005 0.852 ± 0.007 0.786 ± 0.004 0.862 ± 0.006

coil2000 0.554 ± 0.004 0.554 ± 0.004 0.545 ± 0.003 0.523 ± 0.006 0.525 ± 0.003 0.525 ± 0.003 0.502 ± 0.002

dota 0.519 ± 0.000 0.522 ± 0.003 0.516 ± 0.002 0.513 ± 0.003 0.517 ± 0.001 0.516 ± 0.002 0.516 ± 0.002

drive 0.877 ± 0.005 0.846 ± 0.006 0.873 ± 0.004 0.683 ± 0.011 0.782 ± 0.006 0.693 ± 0.003 0.726 ± 0.008

facial 0.690 ± 0.006 0.685 ± 0.003 0.697 ± 0.002 0.631 ± 0.005 0.648 ± 0.004 0.601 ± 0.004 0.602 ± 0.003

fashionmnist 0.912 ± 0.001 0.920 ± 0.003 0.922 ± 0.001 0.831 ± 0.004 0.911 ± 0.002 0.842 ± 0.003 0.896 ± 0.001

gisette 0.897 ± 0.004 0.923 ± 0.002 0.900 ± 0.004 0.855 ± 0.003 0.883 ± 0.006 0.877 ± 0.003 0.878 ± 0.005

hapt 0.876 ± 0.005 0.931 ± 0.003 0.939 ± 0.002 0.553 ± 0.012 0.903 ± 0.004 0.750 ± 0.003 0.781 ± 0.006

image 0.952 ± 0.002 0.950 ± 0.001 0.958 ± 0.003 0.734 ± 0.011 0.779 ± 0.004 0.882 ± 0.007 0.874 ± 0.002

isolet 0.974 ± 0.001 0.968 ± 0.002 0.976 ± 0.002 0.659 ± 0.006 0.971 ± 0.002 0.962 ± 0.003 0.927 ± 0.001

letter 0.925 ± 0.012 0.923 ± 0.006 0.947 ± 0.005 0.882 ± 0.005 0.893 ± 0.003 0.894 ± 0.003 0.883 ± 0.004

madelon 0.566 ± 0.006 0.591 ± 0.003 0.618 ± 0.005 0.523 ± 0.002 0.505 ± 0.005 0.506 ± 0.003 0.501 ± 0.001

mfeat 0.986 ± 0.002 0.984 ± 0.001 0.984 ± 0.001 0.963 ± 0.003 0.972 ± 0.002 0.985 ± 0.001 0.986 ± 0.002

microv1 0.922 ± 0.003 0.939 ± 0.005 0.929 ± 0.004 0.532 ± 0.006 0.897 ± 0.002 0.947 ± 0.000 0.946 ± 0.001

microv2 0.955 ± 0.002 0.932 ± 0.005 0.954 ± 0.003 0.632 ± 0.005 0.891 ± 0.003 0.948 ± 0.002 0.951 ± 0.002

mnist 0.969 ± 0.000 0.975 ± 0.001 0.979 ± 0.000 0.828 ± 0.002 0.966 ± 0.003 0.923 ± 0.001 0.944 ± 0.002

musk 0.940 ± 0.002 0.941 ± 0.001 0.947 ± 0.002 0.912 ± 0.004 0.964 ± 0.001 0.938 ± 0.003 0.901 ± 0.005

nomao 0.914 ± 0.005 0.904 ± 0.002 0.905 ± 0.003 0.797 ± 0.004 0.817 ± 0.006 0.804 ± 0.003 0.849 ± 0.005

semeion 0.907 ± 0.004 0.940 ± 0.001 0.942 ± 0.000 0.732 ± 0.003 0.926 ± 0.005 0.894 ± 0.005 0.884 ± 0.003

Table 14

SVM classification results of CAE, DAE, RAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset CAE DAE RAE PCA LDA ISOMAP LLE

arcene 0.500 ± 0.000 0.632 ± 0.005 0.500 ± 0.000 0.531 ± 0.003 0.545 ± 0.004 0.721 ± 0.002 0.722 ± 0.003

batch 0.924 ± 0.004 0.980 ± 0.002 0.985 ± 0.002 0.983 ± 0.001 0.980 ± 0.002 0.983 ± 0.001 0.892 ± 0.003

coil2000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.493 ± 0.002 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000

dota 0.553 ± 0.001 0.550 ± 0.002 0.534 ± 0.005 0.517 ± 0.005 0.529 ± 0.003 0.547 ± 0.002 0.548 ± 0.000

drive 0.985 ± 0.003 0.941 ± 0.002 0.863 ± 0.004 0.978 ± 0.001 0.979 ± 0.002 0.981 ± 0.002 0.982 ± 0.001

facial 0.701 ± 0.004 0.713 ± 0.002 0.714 ± 0.005 0.672 ± 0.005 0.703 ± 0.003 0.697 ± 0.005 0.501 ± 0.007

fashionmnist 0.938 ± 0.003 0.940 ± 0.000 0.942 ± 0.001 0.921 ± 0.003 0.935 ± 0.001 0.929 ± 0.001 0.934 ± 0.002

gisette 0.816 ± 0.001 0.969 ± 0.003 0.955 ± 0.006 0.925 ± 0.002 0.941 ± 0.004 0.962 ± 0.001 0.963 ± 0.003

hapt 0.871 ± 0.003 0.889 ± 0.001 0.886 ± 0.004 0.788 ± 0.005 0.875 ± 0.003 0.859 ± 0.003 0.869 ± 0.001

image 0.886 ± 0.001 0.877 ± 0.005 0.910 ± 0.002 0.850 ± 0.004 0.862 ± 0.001 0.784 ± 0.005 0.620 ± 0.003

isolet 0.971 ± 0.002 0.975 ± 0.001 0.976 ± 0.001 0.958 ± 0.003 0.965 ± 0.001 0.963 ± 0.001 0.966 ± 0.003

letter 0.841 ± 0.004 0.828 ± 0.004 0.879 ± 0.005 0.812 ± 0.003 0.839 ± 0.005 0.842 ± 0.004 0.852 ± 0.002

madelon 0.580 ± 0.002 0.591 ± 0.001 0.587 ± 0.000 0.557 ± 0.003 0.585 ± 0.002 0.547 ± 0.004 0.523 ± 0.004

mfeat 0.985 ± 0.002 0.985 ± 0.001 0.985 ± 0.001 0.926 ± 0.003 0.962 ± 0.003 0.980 ± 0.002 0.981 ± 0.000

microv1 0.796 ± 0.003 0.918 ± 0.005 0.786 ± 0.002 0.731 ± 0.005 0.876 ± 0.004 0.953 ± 0.002 0.953 ± 0.002

microv2 0.916 ± 0.003 0.871 ± 0.001 0.881 ± 0.001 0.652 ± 0.010 0.791 ± 0.008 0.832 ± 0.009 0.835 ± 0.011

mnist 0.984 ± 0.001 0.985 ± 0.001 0.987 ± 0.000 0.971 ± 0.002 0.979 ± 0.002 0.829 ± 0.005 0.976 ± 0.001

musk 0.939 ± 0.005 0.948 ± 0.006 0.964 ± 0.003 0.955 ± 0.003 0.958 ± 0.001 0.959 ± 0.001 0.954 ± 0.002

nomao 0.935 ± 0.000 0.924 ± 0.002 0.932 ± 0.001 0.929 ± 0.000 0.930 ± 0.001 0.933 ± 0.001 0.925 ± 0.003

semeion 0.957 ± 0.003 0.957 ± 0.001 0.962 ± 0.001 0.936 ± 0.005 0.957 ± 0.002 0.929 ± 0.003 0.949 ± 0.003

Table 15

MLP classification results of CAE, DAE, RAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset CAE DAE RAE PCA LDA ISOMAP LLE

arcene 0.465 ± 0.005 0.500 ± 0.000 0.523 ± 0.001 0.521 ± 0.004 0.512 ± 0.003 0.691 ± 0.006 0.673 ± 0.004

batch 0.929 ± 0.002 0.920 ± 0.003 0.920 ± 0.002 0.915 ± 0.001 0.512 ± 0.003 0.919 ± 0.004 0.566 ± 0.001

coil2000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000

dota 0.529 ± 0.003 0.500 ± 0.000 0.547 ± 0.005 0.524 ± 0.002 0.525 ± 0.004 0.527 ± 0.002 0.525 ± 0.001

drive 0.964 ± 0.004 0.680 ± 0.010 0.812 ± 0.006 0.941 ± 0.003 0.883 ± 0.004 0.802 ± 0.005 0.809 ± 0.004

facial 0.706 ± 0.003 0.701 ± 0.004 0.718 ± 0.003 0.692 ± 0.002 0.704 ± 0.002 0.707 ± 0.001 0.697 ± 0.004

fashionmnist 0.915 ± 0.001 0.911 ± 0.004 0.917 ± 0.002 0.902 ± 0.003 0.909 ± 0.001 0.898 ± 0.004 0.905 ± 0.004

gisette 0.591 ± 0.002 0.627 ± 0.003 0.614 ± 0.003 0.602 ± 0.001 0.612 ± 0.003 0.609 ± 0.004 0.605 ± 0.002

hapt 0.838 ± 0.002 0.850 ± 0.001 0.841 ± 0.003 0.834 ± 0.005 0.839 ± 0.003 0.840 ± 0.004 0.820 ± 0.005

image 0.884 ± 0.003 0.872 ± 0.003 0.898 ± 0.001 0.881 ± 0.003 0.552 ± 0.010 0.672 ± 0.008 0.645 ± 0.009

isolet 0.850 ± 0.006 0.842 ± 0.007 0.880 ± 0.006 0.849 ± 0.005 0.819 ± 0.006 0.791 ± 0.009 0.805 ± 0.005

letter 0.749 ± 0.003 0.740 ± 0.002 0.742 ± 0.005 0.713 ± 0.005 0.732 ± 0.002 0.739 ± 0.006 0.722 ± 0.002

madelon 0.590 ± 0.001 0.637 ± 0.004 0.631 ± 0.002 0.577 ± 0.008 0.582 ± 0.005 0.556 ± 0.005 0.512 ± 0.007

mfeat 0.938 ± 0.003 0.968 ± 0.001 0.976 ± 0.000 0.921 ± 0.003 0.953 ± 0.004 0.974 ± 0.001 0.964 ± 0.002

microv1 0.713 ± 0.004 0.690 ± 0.005 0.714 ± 0.003 0.694 ± 0.003 0.701 ± 0.005 0.829 ± 0.006 0.868 ± 0.004

microv2 0.747 ± 0.002 0.725 ± 0.004 0.742 ± 0.003 0.731 ± 0.002 0.720 ± 0.002 0.740 ± 0.001 0.733 ± 0.003

mnist 0.896 ± 0.000 0.905 ± 0.002 0.909 ± 0.001 0.902 ± 0.002 0.906 ± 0.001 0.893 ± 0.000 0.896 ± 0.003

musk 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.992 ± 0.002 0.991 ± 0.002 0.994 ± 0.001 0.952 ± 0.001

nomao 0.923 ± 0.003 0.530 ± 0.011 0.913 ± 0.003 0.913 ± 0.002 0.915 ± 0.003 0.911 ± 0.005 0.914 ± 0.003

semeion 0.860 ± 0.005 0.756 ± 0.002 0.793 ± 0.006 0.820 ± 0.004 0.849 ± 0.002 0.746 ± 0.005 0.822 ± 0.003

56

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 16

C4.5 classification results of CAE, DAE, RAE, PCA, LDA, ISOMAP and LLE for test data (AUC).

Dataset CAE DAE RAE PCA LDA ISOMAP LLE

arcene 0.565 ± 0.006 0.678 ± 0.003 0.730 ± 0.004 0.654 ± 0.005 0.662 ± 0.004 0.766 ± 0.003 0.695 ± 0.004

batch 0.911 ± 0.003 0.982 ± 0.000 0.983 ± 0.001 0.971 ± 0.003 0.973 ± 0.002 0.980 ± 0.001 0.975 ± 0.002

coil2000 0.521 ± 0.001 0.516 ± 0.002 0.513 ± 0.004 0.509 ± 0.002 0.504 ± 0.002 0.507 ± 0.001 0.500 ± 0.000

dota 0.548 ± 0.003 0.539 ± 0.002 0.521 ± 0.005 0.527 ± 0.003 0.531 ± 0.005 0.503 ± 0.005 0.515 ± 0.003

drive 0.944 ± 0.003 0.850 ± 0.004 0.867 ± 0.005 0.936 ± 0.003 0.938 ± 0.003 0.954 ± 0.001 0.947 ± 0.002

facial 0.660 ± 0.005 0.655 ± 0.013 0.683 ± 0.008 0.626 ± 0.003 0.651 ± 0.005 0.635 ± 0.007 0.632 ± 0.004

fashionmnist 0.883 ± 0.003 0.888 ± 0.001 0.890 ± 0.000 0.872 ± 0.002 0.883 ± 0.000 0.879 ± 0.001 0.881 ± 0.001

gisette 0.714 ± 0.003 0.743 ± 0.005 0.790 ± 0.006 0.682 ± 0.003 0.705 ± 0.005 0.692 ± 0.003 0.709 ± 0.004

hapt 0.800 ± 0.001 0.799 ± 0.000 0.799 ± 0.001 0.797 ± 0.002 0.791 ± 0.003 0.792 ± 0.002 0.788 ± 0.004

image 0.862 ± 0.003 0.859 ± 0.003 0.927 ± 0.001 0.913 ± 0.002 0.922 ± 0.002 0.774 ± 0.004 0.838 ± 0.003

isolet 0.888 ± 0.003 0.874 ± 0.003 0.867 ± 0.004 0.840 ± 0.004 0.859 ± 0.004 0.851 ± 0.005 0.862 ± 0.002

letter 0.813 ± 0.012 0.811 ± 0.008 0.820 ± 0.004 0.783 ± 0.010 0.811 ± 0.004 0.793 ± 0.005 0.805 ± 0.003

madelon 0.557 ± 0.006 0.524 ± 0.003 0.565 ± 0.002 0.626 ± 0.007 0.677 ± 0.003 0.652 ± 0.005 0.631 ± 0.005

mfeat 0.930 ± 0.001 0.913 ± 0.004 0.941 ± 0.002 0.889 ± 0.002 0.898 ± 0.003 0.892 ± 0.001 0.895 ± 0.002

microv1 0.871 ± 0.002 0.849 ± 0.001 0.937 ± 0.003 0.731 ± 0.010 0.806 ± 0.003 0.685 ± 0.005 0.868 ± 0.002

microv2 0.867 ± 0.006 0.845 ± 0.002 0.873 ± 0.003 0.835 ± 0.005 0.837 ± 0.005 0.815 ± 0.006 0.838 ± 0.003

mnist 0.969 ± 0.002 0.975 ± 0.001 0.979 ± 0.002 0.891 ± 0.003 0.927 ± 0.002 0.897 ± 0.003 0.915 ± 0.001

musk 0.880 ± 0.002 0.883 ± 0.001 0.885 ± 0.000 0.869 ± 0.004 0.872 ± 0.002 0.876 ± 0.004 0.871 ± 0.003

nomao 0.885 ± 0.001 0.877 ± 0.003 0.882 ± 0.002 0.881 ± 0.001 0.862 ± 0.000 0.767 ± 0.003 0.872 ± 0.003

semeion 0.727 ± 0.002 0.739 ± 0.005 0.759 ± 0.001 0.729 ± 0.000 0.739 ± 0.003 0.744 ± 0.003 0.731 ± 0.002

Table 17

Average rankings considering CAE, DAE, RAE, PCA, LDA, ISOMAP and LLE by classification method.

kNN SVM MLP C4.5

Architecture Ranking Architecture Ranking Architecture Ranking Architecture Ranking

RAE 1.925 RAE 2.600 RAE 2.250 RAE 2.025

DAE 2.700 DAE 3.150 CAE 3.025 CAE 3.075

CAE 2.750 CAE 3.550 DAE 4.125 DAE 3.275

LDA 4.475 LDA 4.200 ISOMAP 4.350 LDA 4.275

LLE 4.775 ISOMAP 4.275 LDA 4.425 LLE 4.750

ISOMAP 4.925 LLE 4.300 LLE 4.800 ISOMAP 4.950

PCA 6.450 PCA 5.925 PCA 5.025 PCA 5.650

Table 18

Li post-hoc Friedman test for dimensionality reduction methods by classification algorithm.

CAE DAE RAE PCA LDA ISOMAP LLE

kNN CAE - - - 4.260E-07 1.862E-02 3.810E-03 6.360E-03

DAE 9.417E-01 - - 4.234E-07 1.634E-02 3.373E-03 5.558E-03

RAE 2.870E-01 3.067E-01 - 7.346E-10 6.626E-04 5.908E-05 1.268E-04

PCA - - - - - -

LDA - - - 7.316E-03 - 5.650E-01 6.970E-01

ISOMAP - - - 3.564E-02 - - -

LLE - - - 2.124E-02 - 8.408E-01

SVM CAE - - - 3.549E-03 4.219E-01 3.792E-01 3.792E-01

DAE 6.144E-01 - - 5.103E-04 1.972E-01 1.840E-01 1.840E-01

RAE 2.517E-01 4.906E-01 - 2.376E-05 5.924E-02 5.924E-02 5.924E-02

PCA - - - - - - -

LDA - - - 5.924E-02 - 9.226E-01 9.072E-01

ISOMAP - - - 5.924E-02 - - 9.708E-01

LLE - - - 5.924E-02 - - -

MLP CAE - 2.122E-01 - 1.426E-02 1.027E-01 1.181E-01 2.784E-02

DAE - - - 3.276E-01 7.165E-01 7.762E-01 4.676E-01

RAE 4.048E-01 2.104E-02 - 1.020E-03 1.013E-02 1.104E-02 1.986E-03

PCA - - - - - - -

LDA - - - 4.876E-01 - - 6.606E-01

ISOMAP - - - 4.676E-01 9.126E-01 - 6.080E-01

LLE - - - 7.762E-01 - - -

C4.5 CAE - 7.860E-01 - 8.588E-04 1.245E-01 1.806E-02 3.687E-02

DAE - - - 2.131E-03 1.946E-01 3.687E-02 6.366E-02

RAE 1.805E-01 1.147E-01 - 2.347E-06 3.457E-03 1.947E-04 4.644E-04

PCA - - - - - - -

LDA - - - 8.257E-02 - 3.657E-01 5.217E-01

ISOMAP - - - 3.626E-01 - - -

LLE - - - 2.388E-01 - 7.860E-01

57

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

Table 19

Autoencoder recommended considering number of feature and classifier.

Number of features Classifiers

kNN SVM MLP C4.5

> 1000 RAE DAE RAE RAE

DAE CAE (large number of classes)

> 500 - < 1000 RAE RAE (non-binary) RAE (non-binary) RAE

CAE DAE (binary) DAE (binary) CAE (more 10 classes)

> 100 - < 500 RAE RAE CAE RAE

CAE-DAE (binary) CAE (binary) RAE (binary) CAE (binary)

< 100 RAE RAE RAE RAE

CAE CAE CAE CAE

s

o

a

s

8

f

T

e

S

t

e

e

v

a

h

b

w

t

a

u

s

e

m

g

a

fi

g

b

f

d

m

A

s

t

r

c

b

d

s

i

t

I

m

d

b

v

c

c
• When working with a dataset with very high dimensionality we rec-

ommend using DAE model. This model has obtained the best results

for datasets with more than 1000 features.
• The model that works best when starting from a binary dataset with

a number of features between 500 and 1000 is DAE. However, if it

is a non-binary dataset the best model is RAE.
• RAE model offers good results for datasets with between 100 and

500 features. Similarly, CAE model demonstrates good predictive

performance with binary datasets.
• CAE and RAE are the most recommended models if datasets with

less than 100 features are used.

MLP:

• The model with the best performance is RAE when working with a

dataset with a number greater than 1000 features. However, CAE

model offers good results when working with datasets with a high

number of classes.
• The best results are obtained with RAE model for a non-binary

dataset with a number of features between 500 and 1000. However,

the best model is DAE when using a binary dataset.
• The model that generates the best predictive performance when

datasets have between 100 and 500 features is CAE. However, the

best model when using several binary datasets is RAE.
• We recommend using CAE and RAE models when using datasets with

less than 100 features.

C4.5:

• Based on this study, RAE is recommended for a dataset with a very

high dimensionality (with more than 1000 features).
• When working with datasets that has between 500 and 1000 charac-

teristics, it is advisable to use RAE and CAE models when the number

of classes is greater than 10. However, RAE is the best model when

using a binary dataset.
• The model that generates the best predictive performance is RAE

if the number of features of the datasets is between 100 and 500.

Similarly, CAE model works well with some binary datasets.
• According to the generated results, we recommend using CAE and

RAE models when using datasets with less than 100 features.

Time:

• The results presented in this study indicate that, in general, the high-

est predictive performance is obtained with configurations that com-

press the data less. However, sometimes it is important to reduce ex-

ecution times. In these cases a configuration that compresses more

data may be more useful, despite a loss in predictive performance.

In summary, the AE model used to carry out the reduction of dimen-

ionality must be adapted to the data traits, as well as to the method-

logy of the classification algorithm that is used. Therefore, the above

dvice has been presented according to the experience provided by this

tudy.
58
. Concluding remarks

In this paper an exhaustive study has been carried out on the per-

ormance of AEs when tackling the task of dimensionality reduction.

his task is one of the challenges faced by machine learning, due to the

ffects of high dimensionality of the data in many current processes.

pecifically, this study focuses on the task of classification. In this con-

ext there are several different classification methodologies. Therefore,

xperimentation is necessary to incorporate algorithms that cover sev-

ral of the most widely used methodologies in order to provide a general

ision of the performance of AEs. For this reason the most well known

lgorithms with the best results from the most important methodologies

ave been selected, specifically kNN, SVM, MLP and C4.5.

In order to undertake the task of dimensionality reduction, AEs have

een used. The main reason is the good results that they have obtained

hen generating high level features, which is fundamental to improving

he subsequent predictive performance. In this case, in order to give

 broader view of the performance of AEs four different models were

sed, starting from the most basic model and generating three more

ophisticated models, which give a global vision of the purchase of AEs.

To assess the performance of the different AE models a thorough

xperimentation on 20 datasets was designed combining the four AE

odels with the four classification algorithms. New feature spaces are

enerated for each dataset using the different AE models, which are used

s input for the different classification algorithms. In particular, in the

rst part of the experimentation we determined which AE architecture

enerated the best performance. In the second part, the results generated

y the best architecture have been compared with the results obtained

rom the original data.

The results obtained after performing the experiments show that pre-

ictive performance improves when using AE models to reduce the di-

ensionality of the input space. In particular, the most sophisticated

E models significantly improve the results obtained with the most ba-

ic model and with the original data. In a similar way, the execution

ime is significantly improved when using the different AE models by

educing the input space and the computational load of the different

lassification algorithms. The conclusions reached have been supported

y a series of statistical tests that confirm the existence of significant

ifferences between the different models.

In addition, AE models have been compared with traditional dimen-

ionality reduction methods, with the aim of verifying their performance

n relation to other models that have previously performed well in this

ask. For this reason, AE models have been compared with LDA, PCA,

SOMAP and LLE. The conclusions obtained indicate that sophisticated

odels based on AEs have a better predictive performance than the tra-

itional models analyzed. This may indicate that the features generated

y methods based on AEs are more significant and provide more rele-

ant information to the classification algorithms.

Finally, the study leads to a series of guidelines with the aim of fa-

ilitating the choice of the most appropriate AE models according to the

lassification algorithm and the characteristics of the input data. It is

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

i

p

A

E

w

C

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

mportant to consider these factors in order to maximize the predictive

erformance of the model used.

cknowledgments

This study by F. Pulgar was supported by the Spanish Ministry of

ducation under the FPU National Program (Ref. FPU16/00324). This

ork was partially supported by the Spanish Ministry of Economy and

ompetitiveness under project TIN2015-68454-R.

eferences

[1] R.O. Duda , P.E. Hart , D.G. Stork , Pattern Classification, Wiley, New York, 1973 .

[2] R. Kohavi, F. Provost, Glossary of terms, Mach. Learn. 30 (2–3) (1998) 271–274,

doi: 10.1023/A:1017181826899 .

[3] D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning, Mach. Learn.

3 (2) (1988) 95–99, doi: 10.1023/A:1022602019183 .

[4] S.B. Kotsiantis , Supervised machine learning: a review of classification techniques,

Informatica 31 (2007) 249–268 .

[5] D.W. Aha, D. Kibler, M.K. Albert, Instance-based learning algorithms, Mach. Learn.

6 (1) (1991) 37–66, doi: 10.1023/A:1022689900470 .

[6] M.A. Hearst , S.T. Dumais , E. Osuna , J. Platt , B. Scholkopf , Support vector machines,

IEEE Intell. Syst. Appl. 13 (4) (1998) 18–28 .

[7] R.J. Schalkoff, Artificial Neural Networks, vol. 1, McGraw-Hill, New York, 1997 .

[8] J.R. Quinlan , Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106 .

[9] R. Bellman , Dynamic Programming, Princeton University Press, 1957 .

10] R. Bellman , Adaptive Control Processes: A Guided Tour, Princeton University Press,

1961 .

11] M. Galar , A. Fernandez , E. Barrenechea , H. Bustince , F. Herrera , A review on en-

sembles for the class imbalance problem: bagging-, boosting-, and hybrid-based ap-

proaches, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42 (4) (2012) 463–484 .

12] G.E. Batista , R.C. Prati , M.C. Monard , A study of the behavior of several methods

for balancing machine learning training data, ACM SIGKDD Explor. Newsletter 6 (1)

(2004) 20–29 .

13] M. Dash, H. Liu, Feature selection for classification, Intell. Data Anal. 1 (3) (1997)

131–156, doi: 10.3233/IDA-1997-1302 .

14] H. Yu, J. Yang, A direct lda algorithm for high-dimensional data-with ap-

plication to face recognition, Pattern Recogn. 34 (10) (2001) 2067–2070,

doi: 10.1016/S0031-3203(00)00162-X .

15] K. Pearson, LIII. On lines and planes of closest fit to systems of points

in space, Lond. Edinb. Dublin Philos.Mag. J. Sci. 2 (11) (1901) 559–572,

doi: 10.1080/14786440109462720 .

16] J.B. Tenenbaum, A global geometric framework for nonlinear dimensionality reduc-

tion, Science 290 (5500) (2000) 2319–2323, doi: 10.1126/science.290.5500.2319 .

17] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embed-

ding, Science 290 (5500) (2000) 2323–2326, doi: 10.1126/science.290.5500.2323 .

18] P. Domingos, A few useful things to know about machine learning, Commun. ACM

55 (10) (2012) 78–87, doi: 10.1145/2347736.2347755 .

19] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new

perspectives, Pattern Anal. Mach. Intell. IEEE Trans. 35 (8) (2013) 1798–1828,

doi: 10.1109/TPAMI.2013.50 .

20] S. Garca, J. Luengo, F. Herrera, Data Preprocessing in Data Mining, Springer, 2015,

doi: 10.1007/978-3-319-10247-4 .

21] I. Guyon, A. Elisseeff, An Introduction to Feature Extraction, Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2006, pp. 1–25, doi: 10.1007/978-3-540-35488-8_1 .

22] U.G. Mangai, S. Samanta, S. Das, P.R. Chowdhury, A survey of decision fusion and

feature fusion strategies for pattern classification, IETE Tech. Rev. 27 (4) (2010)

293–307, doi: 10.4103/0256-4602.64604 .

23] G. Lin, H. Zhu, X. Kang, C. Fan, E. Zhang, Feature structure fusion and its application,

Inf. Fusion 20 (2014) 146–154, doi: 10.1016/j.inffus.2014.01.002 .

24] Y. Du, W. Song, Q. He, D. Huang, A. Liotta, C. Su, Deep learning with multi-scale

feature fusion in remote sensing for automatic oceanic eddy detection, Inf. Fusion

49 (2019) 89–99, doi: 10.1016/j.inffus.2018.09.006 .

25] Q. Zhang, L.T. Yang, Z. Chen, P. Li, A survey on deep learning for big data, Inf.

Fusion 42 (2018) 146–157, doi: 10.1016/j.inffus.2017.10.006 .

26] L. Deng, Deep learning: methods and applications, Found. Trend. Signal Process. 7

(3–4) (2014) 197–387, doi: 10.1561/2000000039 .

27] Y. Bengio, Deep learning of representations: looking forward, in: International

Conference on Statistical Language and Speech Processing, 2013, pp. 1–37,

doi: 10.1007/978-3-642-39593-2_1 .

28] D. Charte, F. Charte, S. Garca, M.J. del Jesus, F. Herrera, A practical tutorial on au-

toencoders for nonlinear feature fusion: taxonomy, models, software and guidelines,

Inf. Fusion 44 (2018) 78–96, doi: 10.1016/j.inffus.2017.12.007 .

29] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural

networks, Science 313 (5786) (2006) 504–507, doi: 10.1126/science.1127647 .

30] F.J. Pulgar, F. Charte, A.J. Rivera, M.J.D. Jesus, Aeknn: an autoencoder knn-based

classifier with built-in dimensionality reduction, Int. J. Comput. Intell. Syst. 12 (11)

(2018) 436–452, doi: 10.2991/ijcis.2018.125905686 .

31] H.F. Nweke, Y.W. Teh, G. Mujtaba, M.A. Al-garadi, Data fusion and multiple classi-

fier systems for human activity detection and health monitoring: review and open re-

search directions, Inf. Fusion 46 (2019) 147–170, doi: 10.1016/j.inffus.2018.06.002 .

32] Z. Chen, W. Li, Multisensor feature fusion for bearing fault diagnosis using sparse

autoencoder and deep belief network, IEEE Trans. Instrument. Measur. 66 (7) (2017)

1693–1702, doi: 10.1109/tim.2017.2669947 .
59
33] V. Singh, N.K. Verma, Z.U. Islam, Y. Cui, Feature learning using stacked autoencoder

for shared and multimodal fusion of medical images, in: Computational Intelligence:

Theories, Applications and Future Directions - Volume I, Springer Singapore, Singa-

pore, 2019, pp. 53–66, doi: 10.1007/978-981-13-1132-1_5 .

34] S. Maurya, V. Singh, S. Dixit, N.K. Verma, A. Salour, J. Liu, Fusion of low-level

features with stacked autoencoder for condition based monitoring of machines, in:

IEEE International Conference on Prognostics and Health Management (ICPHM),

2018, pp. 1–8, doi: 10.1109/ICPHM.2018.8448969 .

35] J. López, A.S. Garea, D.B. Heras, F. Argüello, Stacked autoencoders for mul-

ticlass change detection in hyperspectral images, in: IEEE International Geo-

science and Remote Sensing Symposium (IGARSS), 2018, pp. 1906–1909,

doi: 10.1109/IGARSS.2018.8518338 .

36] H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular value

decomposition, Biol. Cybern. 59 (4–5) (1988) 291–294, doi: 10.1007/BF00332918 .

37] P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, Extracting and compos-

ing robust features with denoising autoencoders, in: Proceedings of the 25th

International Conference on Machine Learning, ACM, 2008, pp. 1096–1103,

doi: 10.1145/1390156.1390294 .

38] S. Rifai , Y. Bengio , Y. Dauphin , P. Vincent , A generative process for sampling contrac-

tive auto-encoders, in: Proceedings of the 29th International Conference on Machine

Learning, ICML, 2012 . Vol. 2, 2012

39] Y. Qi, Y. Wang, X. Zheng, Z. Wu, Robust feature learning by stacked autoen-

coder with maximum correntropy criterion, in: 2014 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 6716–6720,

doi: 10.1109/ICASSP.2014.6854900 .

40] D. Heckerman, D. Geiger, D.M. Chickering, Learning bayesian networks: the com-

bination of knowledge and statistical data, Mach. Learn. 20 (3) (1995) 197–243,

doi: 10.1007/BF00994016 .

41] L.A. Zadeh, Outline of a new approach to the analysis of complex systems and

decision processes, IEEE Trans. Syst. Man Cybern. SMC- 3 (1) (1973) 28–44,

doi: 10.1109/TSMC.1973.5408575 .

42] L. Davis , Handbook of genetic algorithms, CUMINCAD (1991) .

43] S. Muggleton, Inductive logic programming, New Generat. Comput. 8 (4) (1991)

295–318, doi: 10.1007/BF03037089 .

44] N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regres-

sion, Am. Stat. 46 (3) (1992) 175–185, doi: 10.1080/00031305.1992.10475879 .

45] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory 13

(1) (1967) 21–27, doi: 10.1109/TIT.1967.1053964 .

46] C.G. Atkeson, A.W. Moorey, S. Schaalz, A.W. Moore, S. Schaal, Locally weighted

learning, Artif. Intell. 11 (1997) 11–73, doi: 10.1023/A:1006559212014 .

47] K. Hornik , M. Stinchcombe , H. White , Multilayer feedforward networks are universal

approximators, Neural Netw. 2 (5) (1989) 359–366 .

48] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-

propagating errors, Nature 323 (6088) (1986) 533, doi: 10.1038/323533a0 .

49] M.W. Gardner , S. Dorling , Artificial neural networks (the multilayer perceptron)a re-

view of applications in the atmospheric sciences, Atmos. Environ. 32 (14–15) (1998)

2627–2636 .

50] B.E. Boser , I.M. Guyon , V.N. Vapnik , A training algorithm for optimal margin clas-

sifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning

Theory, ACM, 1992, pp. 144–152 .

51] I.H. Witten , E. Frank , M.A. Hall , Data Mining: Practical Machine Learning Tools and

Techniques, 3rd edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2011. ISBN 0123748569 .

52] G.F. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Trans.

Inf. Theory 14 (1) (1968) 55–63, doi: 10.1109/TIT.1968.1054102 .

53] W. Liu, X. Yang, D. Tao, J. Cheng, Y. Tang, Multiview dimension reduction

via hessian multiset canonical correlations, Inf. Fusion 41 (2018) 119–128,

doi: 10.1016/j.inffus.2017.09.001 .

54] R.A. Fisher, The statistical utilization of multiple measurements, Annal. Eugen. 8 (4)

(1938) 376–386, doi: 10.1111/j.1469-1809.1938.tb02189.x .

55] H. Hotelling, Analysis of a complex of statistical variables into principal components,

J. Educ. Psychol. 24 (6) (1933) 417–441, doi: 10.1037/h0071325 .

56] W. Wang, Y. Huang, Y. Wang, L. Wang, Generalized autoencoder: a neural net-

work framework for dimensionality reduction, in: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition Workshops, 2014, pp. 496–503,

doi: 10.1109/CVPRW.2014.79 .

57] H. Liu, H. Motoda, Feature extraction, construction and selection, A Data

Mining Perspective, Vol. 453, Springer Science & Business Media, 1998,

doi: 10.1007/978-1-4615-5725-8 .

58] L. Cayton, Algorithms for manifold learning, University of California at San Diego

Tech. Rep2005, 12, 1–17, 1.

59] J.A. Lee , M. Verleysen , Nonlinear Dimensionality Reduction, Springer Science &

Business Media, 2007 .

60] H. Schwenk, Y. Bengio, Training methods for adaptive boosting of neural net-

works, in: Advances in Neural Information Processing Systems, 1998, pp. 647–653,

doi: 10.1162/089976600300015178 .

61] M.A. Kramer, Nonlinear principal component analysis using autoassociative neural

networks, AIChE J. 37 (2) (1991) 233–243, doi: 10.1002/aic.690370209 .

62] R. Hecht-Nielsen, Replicator neural networks for universal optimal source coding,

Science 269 (5232) (1995) 1860–1863, doi: 10.1126/science.269.5232.1860 .

63] S. Rifai , X. Muller , Contractive auto-encoders: explicit invariance during feature ex-

traction, in: Proceedings of the 28th International Conference on Machine Learning,

Vol. 85, 2011, pp. 833–840 .

64] Y. Bengio, Learning deep architectures for AI, Found. Trend. Mach. Learn. 2 (1)

(2009) 1–127, doi: 10.1561/2200000006 .

65] I. Goodfellow , Y. Bengio , A. Courville , Deep Learning, The MIT Press, 2016 .

http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0001
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0001
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0001
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0001
https://doi.org/10.1023/A:1017181826899
https://doi.org/10.1023/A:1022602019183
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0004
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0004
https://doi.org/10.1023/A:1022689900470
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0006
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0006
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0006
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0006
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0006
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0006
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0007
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0007
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0008
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0008
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0009
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0009
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0010
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0010
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0011
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0011
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0011
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0011
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0011
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0011
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0012
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0012
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0012
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0012
https://doi.org/10.3233/IDA-1997-1302
https://doi.org/10.1016/S0031-3203(00)00162-X
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/978-3-319-10247-4
https://doi.org/10.1007/978-3-540-35488-8_1
https://doi.org/10.4103/0256-4602.64604
https://doi.org/10.1016/j.inffus.2014.01.002
https://doi.org/10.1016/j.inffus.2018.09.006
https://doi.org/10.1016/j.inffus.2017.10.006
https://doi.org/10.1561/2000000039
https://doi.org/10.1007/978-3-642-39593-2_1
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1126/science.1127647
https://doi.org/10.2991/ijcis.2018.125905686
https://doi.org/10.1016/j.inffus.2018.06.002
https://doi.org/10.1109/tim.2017.2669947
https://doi.org/10.1007/978-981-13-1132-1_5
https://doi.org/10.1109/ICPHM.2018.8448969
https://doi.org/10.1109/IGARSS.2018.8518338
https://doi.org/10.1007/BF00332918
https://doi.org/10.1145/1390156.1390294
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0038
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0038
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0038
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0038
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0038
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0038
https://doi.org/10.1109/ICASSP.2014.6854900
https://doi.org/10.1007/BF00994016
https://doi.org/10.1109/TSMC.1973.5408575
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0042
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0042
https://doi.org/10.1007/BF03037089
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1023/A:1006559212014
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0047
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0047
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0047
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0047
https://doi.org/10.1038/323533a0
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0049
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0049
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0049
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0050
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0050
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0050
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0050
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0051
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0051
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0051
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0051
https://doi.org/10.1109/TIT.1968.1054102
https://doi.org/10.1016/j.inffus.2017.09.001
https://doi.org/10.1111/j.1469-1809.1938.tb02189.x
https://doi.org/10.1037/h0071325
https://doi.org/10.1109/CVPRW.2014.79
https://doi.org/10.1007/978-1-4615-5725-8
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0057
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0057
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0057
https://doi.org/10.1162/089976600300015178
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1126/science.269.5232.1860
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0061
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0061
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0061
https://doi.org/10.1561/2200000006
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0063
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0063
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0063
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0063

F.J. Pulgar, F. Charte and A.J. Rivera et al. Information Fusion 54 (2020) 44–60

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

66] J. Deng, Z. Zhang, E. Marchi, B. Schuller, Sparse autoencoder-based feature transfer

learning for speech emotion recognition, in: 2013 Humaine Association Conference

on Affective Computing and Intelligent Interaction (ACII), Vol. 00, 2014, pp. 511–

516, doi: 10.1109/ACII.2013.90 .

67] B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis

set: a strategy employed by v1? Vision Res. 37 (23) (1997) 3311–3325,

doi: 10.1016/S0042-6989(97)00169-7 .

68] F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence autoencoder,

in: Proceedings of the 22nd ACM International Conference on Multimedia, MM ’14,

ACM, New York, NY, USA, 2014, pp. 7–16, doi: 10.1145/2647868.2654902 .

69] Y.J. Fan, Autoencoder node saliency: selecting relevant latent representations, Pat-

tern Recognition 88 (2019) 643–653, doi: 10.1016/j.patcog.2018.12.015 .

70] Y. Yang, Q.M.J. Wu, Y. Wang, Autoencoder with invertible functions for dimension

reduction and image reconstruction, IEEE Trans. Syst. Man Cybern. 48 (7) (2018)

1065–1079, doi: 10.1109/TSMC.2016.2637279 .

71] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Statist. 22

(3) (1951) 400–407, doi: 10.1214/aoms/1177729586 .

72] T. Tieleman , G. Hinton , Lecture 6.5-rmsprop: divide the gradient by a running av-

erage of its recent magnitude, COURSERA: Neural Netw. Mach. Learn. 4 (2) (2012)

26–31 .

73] J. Duchi , E. Hazan , Y. Singer , Adaptive subgradient methods for online learning and

stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121–2159 .

74] A. Cauchy , Méthode générale pour la résolution des systemes déquations simul-

tanées, Comp. Rend. Sci. Paris 25 (1847) (1847) 536–538 .

75] L. Yann , Modeles connexionnistes de lapprentissage, ph.d. thesis, These de Doctorat,

volume 6, Universite Paris, 1987 .

76] P. Vincent , H. Larochelle , I. Lajoie , Y. Bengio , P.A. Manzagol , Stacked denoising au-

toencoders: learning useful representations in a deep network with a local denoising

criterion, J. Mach, Learn. Res. 11 (2010) 3371–3408 . Dec.

77] W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: a localized similarity measure,

in: The 2006 IEEE International Joint Conference on Neural Network Proceedings,

2006, pp. 4919–4924, doi: 10.1109/IJCNN.2006.247192 .

78] I. Guyon , S. Gunn , A. Ben-Hur , G. Dror , Result analysis of the nips 2003 feature

selection challenge, in: Advances in neural information processing systems, 2005,

pp. 545–552 .

79] A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical gas

sensor drift compensation using classifier ensembles, Sensor. Actuat. 166 (2012)

320–329, doi: 10.1016/j.snb.2012.01.074 .

80] J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero,

C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, F. Herrera, Keel: a software tool

to assess evolutionary algorithms for data mining problems, Soft Comput. 13 (3)

(2009) 307–318, doi: 10.1007/s00500-008-0323-y .

81] D. Dua, C. Graff, UCI machine learning repository, 2019,

http://archive.ics.uci.edu/ml .

82] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for benchmark-

ing machine learning algorithms, 2017, http://arxiv.org/abs/cs.LG/1708.07747 .
60
83] J.L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, D. Anguita, Transition-aware human

activity recognition using smartphones, Neurocomputing (171) (2016) 754–767,

doi: 10.1016/j.neucom.2015.07.085 .

84] R. Cole, M. Fanty, Spoken letter recognition, in: Proceedings of the Workshop on

Speech and Natural Language, 1990, pp. 385–390, doi: 10.3115/116580.116725 .

85] I. Guyon , S. Gunn , A. Ben-Hur , G. Dror , Result analysis of the NIPS 2003 feature se-

lection challenge, in: Proceedings of Neural Information Processing Systems, Vol. 4,

2004, pp. 545–552 .

86] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to doc-

ument recognition, in: Proceedings of the IEEE, volume 86, 1998, pp. 2278–2324,

doi: 10.1109/5.726791 .

87] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.C. Sanchez, M. Müller, Proc:

an open-source package for r and s+ to analyze and compare roc curves, BMC Bioinf.

12 (1) (2011) 77, doi: 10.1186/1471-2105-12-77 .

88] D.J. Hand, R.J. Till, A simple generalisation of the area under the roc curve

for multiple class classification problems, Mach. Learn. 45 (2) (2001) 171–186,

doi: 10.1023/A:1010920819831 .

89] M. Friedman, The use of ranks to avoid the assumption of normality implicit

in the analysis of variance, J. Am. Stat. Assoc. 32 (200) (1937) 675–701,

doi: 10.1080/01621459.1937.10503522 .

90] J.D. Li, A two-step rejection procedure for testing multiple hypotheses, J. Stat. Plan.

Inference 138 (6) (2008) 1521–1527, doi: 10.1016/j.jspi.2007.04.032 .

91] S. Garca, A. Fernndez, J. Luengo, F. Herrera, Advanced nonparametric tests

for multiple comparisons in the design of experiments in computational intelli-

gence and data mining: experimental analysis of power, Inf. Sci. 180 (10) (2010)

2044–2064 . Special Issue on Intelligent Distributed Information Systems. doi:

10.1016/j.ins.2009.12.010 .

92] F. Chollet, et al., Keras, 2015, https://keras.io .

93] R.C. Team, R: A language and environment for statistical computing, R Foundation

for Statistical Computing, Vienna, Austria, 2016 . https://www.R-project.org/ .

94] K. Schliep, K. Hechenbichler, kknn: weighted k-nearest neighbors, r package version

1.3.1, 2016, https://CRAN.R-project.org/package = kknn .

95] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, e1071: misc functions

of the department of statistics, Probability Theory Group (Formerly: E1071), TU

Wien, r Package Version 1.6–7, 2015 . https://CRAN.R-project.org/package = e1071 .

96] M.K. C., J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper, Z.

Mayer, B. Kenkel, R.C. Team, M. Benesty, R. Lescarbeau, A. Ziem, L. Scrucca, Y.

Tang, C. Candan, caret: classification and regression training, r package version 6.0–

68, 2016, https://CRAN.R-project.org/package = caret .

97] C. Bergmeir , J.M. Benítez , Neural networks in r using the stuttgart neural network

simulator: RSNNS, J. Stat. Softw. 46 (7) (2012) 1–26 .

98] K. Hornik, C. Buchta, A. Zeileis, Open-source machine learning: R meets weka, Com-

put. Stat. 24 (2) (2009) 225–232, doi: 10.1007/s00180-008-0119-7 .

99] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is “nearest neighbor ”

meaningful? in: International Conference on Database Theory, 1999, pp. 217–235,

doi: 10.1007/3-540-49257-7_15 .

https://doi.org/10.1109/ACII.2013.90
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.1145/2647868.2654902
https://doi.org/10.1016/j.patcog.2018.12.015
https://doi.org/10.1109/TSMC.2016.2637279
https://doi.org/10.1214/aoms/1177729586
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0070
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0070
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0070
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0071
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0071
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0071
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0071
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0072
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0072
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0073
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0073
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0074
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0074
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0074
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0074
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0074
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0074
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0074
https://doi.org/10.1109/IJCNN.2006.247192
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0076
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0076
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0076
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0076
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0076
https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/10.1007/s00500-008-0323-y
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.3115/116580.116725
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0081
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0081
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0081
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0081
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0081
https://doi.org/10.1109/5.726791
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1023/A:1010920819831
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1016/j.jspi.2007.04.032
https://doi.org/10.1016/j.ins.2009.12.010
https://keras.io
https://www.R-project.org/
https://CRAN.R-project.org/package=kknn
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=caret
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0090
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0090
http://refhub.elsevier.com/S1566-2535(19)30088-0/sbref0090
https://doi.org/10.1007/s00180-008-0119-7
https://doi.org/10.1007/3-540-49257-7_15

	Choosing the proper autoencoder for feature fusion based on data complexity and classifiers: Analysis, tips and guidelines
	1 Introduction
	2 Preliminaries
	2.1 Classifier paradigms and algorithms
	2.2 Dimensionality reduction methods
	2.3 Autoencoder foundations
	2.4 Autoencoder models
	2.4.1 Basic autoencoder
	2.4.2 Contractive autoencoder
	2.4.3 Denoising autoencoder
	2.4.4 Robust autoencoder

	3 Experimental study
	3.1 Experimental framework

	4 Autoencoders architectures analysis
	4.1 Autoencoders architectures framework
	4.2 Autoencoders architectures analysis

	5 Classification performance analysis
	5.1 Classification algorithm framework
	5.2 kNN
	5.3 SVM
	5.4 MLP
	5.5 C4.5
	5.6 Results analysis
	5.7 Running time analysis

	6 Autoencoders vs classical feature extraction techniques
	7 General guidelines on the use of autoencoder models
	8 Concluding remarks
	Acknowledgments
	References

