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Abstract. Learning from existing data allows building models able to
classify patterns, infer association rules, predict future values in time
series and much more. Choosing the right features is a vital step of the
learning process, specially while dealing with high-dimensional spaces.
Autoencoders (AEs) have shown ability to conduct manifold learning,
compressing the original feature space without losing useful information.
However, there is no optimal AE architecture for all datasets. In this
paper we show how to use evolutionary approaches to automate AE
architecture configuration. First, a coding to embed the AE configura-
tion in a chromosome is proposed. Then, two evolutionary alternatives
are compared against exhaustive search. The results show the great supe-
riority of the evolutionary way.

Keywords: Deep learning · Autoencoder · Optimization ·
Evolutionary

1 Introduction

The performance of many machine learning methods mostly depends on the
quality of the data patterns. Hence the prevalence of feature engineering (FE) [7]
techniques in late years. Feeding the training model with good features greatly
improves its predictive ability. This is specially important with high-dimensional
and other nonstandard problems [4]. The subset of features can be picked up from
the original set of attributes through feature selection [10] procedures. A new
reduced set of features holding more information can also be obtained [11], e.g.
relying on algorithms such as Principal Component Analysis (PCA) [13].

Representation learning [2] is an inherent capability of numerous artificial
neural networks (ANNs). Many of them generate this representation as an inter-
mediate step in the full learning process, such is the case of two Deep Learning
(DL) models, Convolutional Neural Networks and Deep Belief Networks. There
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are a plethora of DL applications in the neuroscience field, and the high dimen-
sionality problem is usually present in them [17].

In this context Autoencoders (AEs) [5] are an interesting tool, since they
are mostly devoted to learn new data representations. AEs work in unsuper-
vised fashion, trying to reconstruct the input into the output the best they can
while preserving certain restrictions in the coding (hidden) layer. The benefits of
AEs compared to classic alternatives such as PCA, specifically in brain disease
diagnosis, have been also demonstrated [15].

As usually happens with most ANNs, adjusting the architecture of an AE is
not an easy work. There are too many options to perform an exhaustive search
of parameters. Therefore, the design frequently is entrusted to the experience of
the practitioner or researcher. However, there is no a best AE architecture to all
cases as the traits of the data to be processed vary.

Our proposal is to lean on evolutionary approaches (EAs) [1], that usually
provide good results in many optimization problems, to design the best AE for
every specific data. The main contributions of this paper are the introduction of
an scheme to represent the AE architecture as a chromosome and the conducted
experiments. These demonstrate that evolutionary methods are able to find good
AE configurations in acceptable time.

The rest of this paper is structured as follows. Basic concepts related to FE,
AEs and EAs are provided in Sect. 2. Section 3 describes the proposal, detailing
the chromosome codification, the EAs to be used and their configuration. The
conducted experimentation and its results are covered in Sect. 4. Some final
thoughts in Sect. 5 close this work.

2 Preliminaries

This section provides a concise introduction to a few essential concepts, including
how FE has been faced until now, what AEs are and the foundations of EAs.
Some basic references useful for further study in these fields are supplied.

2.1 Feature Engineering

Feature engineering is a manual or automated task aimed to obtain a set of fea-
tures better than the original one. Feature selection [10] consists in choosing a
subset of attributes while maintaining most useful information in the data. It can
be manually performed by an expert in the field, but mostly is faced with auto-
mated methods based on feature correlation [12] and mutual information [16].
By contrast, feature extraction methods transform the original data features
to produce a new, usually reduced, set of attributes. Popular algorithms to do
this are PCA and LDA, whose mathematical foundations are relatively easy to
understand.

More advanced studies work with the hypothesis that the distribution of
variables in the original data lies along a lower-dimensional space, usually known
as manifold. A manifold space works with the parameters that produce the data
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points in the original high-dimensional space. Finding this embedded space is the
task of manifold learning [3] algorithms. Unlike PCA or LDA, manifold methods
apply non-linear transformations, so they fall into the non-linear dimensionality
reduction [14] category.

2.2 Autoencoders

Autoencoders, as detailed in [5], are ANNs having a symmetric architecture, as
shown in Fig. 1. The input and output layers have as many units as features there
are in the data. Inner layers usually have fewer units, so that a more compact
representation of the information hold in the data is produced. The goal is to
reconstruct the input patterns into the output as faithfully as possible.

Fig. 1. Classic architecture for an AE. Black nodes denote a 2-variable encoding layer.

Although AEs have many practical applications, the most common one is to
perform feature fusion [5], searching the manifold in which the parameters to
rebuild the data are found. AEs can be configured with a variable amount of
inner layers, each of them having different lengths. The proper architecture will
mostly depend on the complexity of the patterns to be reconstructed and the
restrictions imposed by the codification layer.

2.3 Evolutionary Optimization

Finding the best parameters to tune a machine learning model is an uphill bat-
tle. Performing a grid search through an internal validation process is an usual
approach. However, it is useful only for limited sets of parameters taking known
ranges of values. Evolutionary algorithms [8] have been used to optimize hyper-
parameters for many years, for instance for support vector machines [9] and more
recently for deep learning networks [18].

Even though EAs have been also used to optimize ANNs, and even AEs,
most of the proposals have been focused on learning the weights linked to each
connection. By contrast, the proposal described in the following section is based
on EAs to evolve the AE architecture, while weights are learned through the
usual back-propagation algorithm.
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3 Learning AE Configuration Through Evolution

Next, the approach used to code an AE configuration in a chromosome and the
evolutionary methods used to search good configurations are described.

3.1 Coding AE Structure in a Chromosome

Evolutionary algorithms usually work with binary or real-valued genes. A set
of genes builds a chromosome or individual of the population. In our case each
chromosome will code the configuration of an AE. However, an integer gene
representation is used rather than binary or real-valued genes.

The chromosome will be made up of 14 genes, as shown in Fig. 2. The number
of each gene is shown above, their names inside and just below the range of values
that can be assigned to them. The purpose of each gene, as well as the meaning
of its values, are portrayed in Table 1.

Type Layers Units per layer Activation function per layer Loss

4131-76-321

[1,6] [0,3] [1,f] [1,8] [1,5]

Fig. 2. Chromosome genes, name and interval of values they can get.

Table 1. Purpose of each gene and description of their values.

Name Purpose Values

Type Sets the type of AE to be used (1) Basic, (2) Denoising, (3)
Contractive, (4) Robust, (5) Sparse,
(6) Variational

Layers Number of additional layers in
coder/decoder

(0) Only a coding layer, (1–3)
Additional layers in both coder and
decoder

Units Set the number of units per layer,
with f being the amount of features in
the dataset

The first integer (gen 3) configures the
number of units in the outer layer,
while the last one (gen 6) sets the
coding length

Activ. Activation function to use in each
layer, both for the coder and decoder

(1) linear, (2) sigmoid, (3) tanh, (4)
relu, (5) selu, (6) elu, (7) softplus, (8)
softsign

Loss Loss function to evaluate during fitting (1) Mean squared error, (2) Mean
absolute error, (3) Mean absolute
percentage error, (4) Binary
crossentropy, (5) Cosine proximity
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As can be easily seen, the search space is huge. Excluding genes 3–6, whose
values would vary depending on the number of features in the dataset, there
are more than 250 million combinations: Type × Layers × Activation7 × Loss.
For small datasets having only a few dozens of attributes, this number will
grow to several billions, reaching the trillions of solutions or even more for high-
dimensional datasets. Evaluating all those solutions to find the best one is cur-
rently unfeasible. Therefore, searching the optimal AE configuration will be not
always possible by brute force. However, we could find good enough solutions
through optimization mechanisms based on evolution strategies.

3.2 Evolutionary Approaches

We propose two different evolutionary ways of attacking the outlined prob-
lem. Both of them will use the former chromosome representation. These two
approaches are:

– Genetic algorithm (GA). A classical genetic algorithm, in which a popu-
lation of individuals evolves through a crossover operator, to give rise to new
ones, and to which a mutation operator is applied with a certain probability.

– Evolution strategy (ES). An aggressive solution-seeking procedure, work-
ing with a few individuals who give rise to new ones exclusively through
mutation.

Table 2 summarizes the main parameters used to run these methods. Each
gene in the chromosome is mutated with a probability of 1/15, value based on
the chromosome length itself. Elitism is used in the GA to preserve the tenth
percent of individuals having better fitness.

For the GA, crossover points have been established according to the diagram
in Fig. 2. This allows the two individuals acting as parents to interchange several
of their genes to produce childhood.

Table 2. Main parameters of the evolutionary algorithms.

Parameter GA ES

Population size 50 4

Iterations 100 500

Prob. mutation 1/15 1/15

Elitism (individuals) 5 NA

Termination cost 0 0

Regarding the fitness function that will decide the quality of the solutions,
it will be computed as shown in (1), where trainloss is the reconstruction loss
produced by the AE with training data, Layers is the number of additional
hidden layers (gen 2), Unitscode is the size of the codification layer (gen 6),
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and α is a coefficient setting the level of penalization applied according to the
complexity of the AE.

fitness = trainloss + α(Layers × Unitscode) (1)

4 Experiments

In order to test the ability of evolutionary algorithms to find good solutions in a
reasonable time, two experiments have been carried out. The first one is a small-
scale experiment with the sonar dataset, while the second is a large-scale one
using the well-known MNIST dataset. Exactly the same hardware1 and software2

configuration has been used in both cases. The high-level interface provided by
the ruta [6] package has been used to configure the AEs. The penalization factor
has been set as α = 1 × 10−4, so that simpler architectures are preferred over
complex ones for AEs with similar performance.

Three runs are made for each experiment. One will use the GA to look up
for a solution, other will rely on the ES approach, and the last one will try an
exhaustive search. In the latter case the experiment is run for 24 hours, since it is
impossible to evaluate all existing configurations. Publicly available training/test
partitions were used.

4.1 Small-Scale Case Study

As it happens with all neural networks having several layers, adjusting AE
parameters through training is a time consuming process. The more units there
are in these layers the longer it will take. Because of this our first experiment
is small-scale with the sonar dataset, having only 60 input features. This will
be the number of units in the input and output layers, as well as it would be
the maximum amount of units in the hidden layers. The goal is to obtain a
lower-dimensional codification preserving enough information to reconstruct the
original data.

Having at most 60 units per layer implies that there will be 3.26×1015 possible
AE configurations. Assuming we were able to evaluate one AE per millisecond
in a machine running 24/7, we would need > 100 000 years to find the optimal
solution.

The plots in Fig. 3 give a clear glimpse of each algorithm behavior. The top
row shows the quality3 (Y axis) of evaluated solutions by each approach through
the running time (X axis). The GA tests some bad solutions at the beginning
(left), but it quickly focuses on the better ones. ES only uses mutation and it
produces some bad solutions from time to time, but most of them are quite
good. By contrast, the exhaustive search is not guided by any strategy, so quite
heterogeneous results are obtained.
1 1 PC, CPU Core i5, 16 GB RAM, GPU Nvidia RTX-2080.
2 GNU/Linux, Tensorflow and Keras.
3 Measured by the reconstruction mean squared error expressed as percentage.
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Fig. 3. Analysis of results from the Sonar dataset.
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Fig. 4. Comparative convergence of three approaches on the Sonar dataset.

The bottom row in Fig. 3 shows the same data but with all tested configura-
tions sorted by committed error. As can be seen, both the GA and the ES have
most of the configurations close to the baseline of the Y axis (% error), while
the exhaustive search is not able to reach this point.

In addition to the quality of the solutions, it is also interesting to know how
quickly each method converges to the best solution they are able to find. This
is represented in Fig. 4. It can be noted that ES is the first method to complete
its work. It is quite fast at the beginning, mutating the initial bad solutions
into others much better. The GA takes a little more time and it is able to find
solutions a little more precise than the ES. The convergence of the exhaustive
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search is too slow, and the improvement achieved from the 5th hour (period
presented in this plot) until the end of the 24th hour was negligible.

4.2 Large-Scale Case Study

The MNIST dataset, containing handwritten digit images, was used for the large-
scale study. The images are 28×28 pixels, so it has 784 input features. Following
the former reasoning for sonar, in this case we have 9.51×1019 potential config-
urations. It will take more than 3 billion years of computation time to evaluate
all of them.
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Fig. 5. Analysis of results from the MNIST dataset.
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Fig. 6. Comparative convergence of three approaches on the MNIST dataset.
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Solutions tested through time and all solutions sorted by quality have been
represented in Fig. 5. Once again, the GA forgets bad solutions faster than the
ES does. Moreover, it seems that the ES takes longer to reach the same baseline
than the GA. The exhaustive approach, with its non-guided search, explores lots
of bad solutions through time.

The convergence plot for this dataset (see Fig. 6) is quite similar to that
of sonar. Once again, the ES quickly reduces the error and it achieves better
solutions than the GA in less time. The GA spends more time, and eventually
it seems to reach the same performance as the ES but several hours later. As it
would be expected after analyzing its behavior in Fig. 5, the exhaustive search
almost stalled in the same error level for all the running time.

4.3 Summary of Results

The exact running time, number of evaluated configurations and error percentage
for the best one are provided in Table 3. From the analysis of these results the
following consequences can be drawn:

– The non-guided exhaustive search evaluates a larger amount of AE config-
urations, but it is not able to reach the reconstruction performance level of
GA and ES.

– GA and ES almost achieve the same error levels. The GA returned a slightly
better configuration for sonar, while the ES found the best one for MNIST.

– Although it starts with worse solutions than the GA, the ES takes less time
to hit at the same level.

Table 3. Summary of results.

Approach Running time Configurations Error (%)

Sonar Exhaustive 24 h 21 262 7.093

Genetic algorithm 3 h 21 m 4 505 1.180

Evolution strategy 1 h 16 m 4 001 1.553

MNIST Exhaustive 24 h 7 153 6.084

Genetic algorithm 10 h 39 m 4 505 0.607

Evolution strategy 4 h 40 m 4 001 0.560

Overall, if we are willing to sacrifice a minimal performance advantage in
some cases, the ES seems the best approach to find a good AE configuration for
any dataset, even in cases as MNIST with hundreds of features and several dozens
of thousands of instances.
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5 Final Thoughts

AEs are a useful tool to perform manifold learning, but setting the most appro-
priate AE architecture for every case is a difficult task. Internal cross-validation
is an usual approach for tuning hyper-parameters. However, when the structure
of the AE has to be adjusted the search space is huge. Therefore, more powerful
ways of facing this problem are needed.

In this paper we propose the use of EAs to find the best AE architecture for
each dataset. This may not be the optimal, but it is the best that can be found
in a reasonable time. The conducted experiments demonstrate that ES and GA
are competitive methods to accomplish the job.
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