
A First Approximation to the Effects
of Classical Time Series Preprocessing

Methods on LSTM Accuracy

Daniel Trujillo Viedma(B), Antonio Jesús Rivera Rivas,
Francisco Charte Ojeda, and Maŕıa José del Jesus Dı́az

Andalusian Research Institute on Data Science and Computational Intelligence
(DaSCI), Computer Science Department, University of Jaén, 23071 Jaén, Spain

{dtviedma,arivera,fcharte,mjjesus}@ujaen.es

Abstract. A convenient data preprocessing has proven to be crucial in
order to achieve high levels of accuracy, time series being no exception.
For this kind of forecasting tasks, several specialized preprocessing meth-
ods have been described, being trend analysis and seasonal analysis some
of them. Several have been formally grouped around a methodology that
is always applied to state of the art time series forecasting models, like
the well known ARIMA.

LSTM is a relatively novel architecture which has been specifically
designed to get rid of the vanishing gradient problem. In these models,
great results have been seen when applied for time series forecasting.
Still, little is known about the impact of these traditional preprocessing
methods on the accuracy of LSTM.

In this work an empirical analysis on how classical time series pre-
processing methods influence LSTM results is conducted. That all con-
sidered ones can potentially improve LSTM performance is concluded,
being the seasonal component removal the filter that achieves better,
most robust accuracy gain.

Keywords: LSTM · Time series · Preprocessing

1 Introduction

Feeding not only clean, but also well-formatted, data to data mining models
usually improves their overall performance. Many studies have highlighted the
importance of a good preprocessing analysis [2,10].

In the case of time series, this is not an exception, but given the peculiarity
of this kind of datasets, specialized methods must be used along with several
general purpose ones. Traditional time series modelling tools like ARIMA [9],
which is considered the state of the art because of its good results and strong
statistical foundations, are never applied without a set of preprocessing strategies
called the Box-Jenkins methodology [1]. This demonstrate the great usefulness
of applying these preprocessing techniques.
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWANN 2019, LNCS 11506, pp. 270–280, 2019.
https://doi.org/10.1007/978-3-030-20521-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20521-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-20521-8_23


A First Approximation to the Effects of Classical Time Series 271

Box-Jenkins methodology [1] can be divided into several simpler tasks to
transform the original time series into an stationary one: trend and seasonal
components detection and removal. They will be addressed in this work along
with another useful one: an analysis of lags.

LSTM (Long Short-Term Memory) [7] are a kind of Deep Learning, recur-
rent neural networks that have been designed with an important limitation of
other deep learning methods in mind: the vanishing gradient problem widely
discussed in [6], in which several approaches to solve it are also introduced. LSTM
includes several mechanisms to overcome this limitation, like the Constant Error
Carrousel, that makes them able to remember filtered information. This model
was later applied to time series with impressive results, mainly because of its
capability to model long time dependencies.

This work highlights empirically the effect of the mentioned fundamental
preprocessing methods on LSTM predictive performance, by predicting from
time series that have been preprocessed in several ways.

This document is structured as follows. First, a briefly description of the
LSTM is presented in Sect. 2, then the main preprocessing methods tradition-
ally used for time series data mining is enumerated in Sect. 3. After that, the
entire experimentation carried out and its results are detailed in Sect. 4. Lastly,
a conclusion is given at Sect. 5.

2 LSTM

An LSTM is a recurrent artificial neural cell which has been specifically designed
to solve the vanishing gradient problem. The proposal in [7] defines a complex
neural cell in which information is filtered through several gates, and also trans-
formed accordingly to a previously memorized value computed from the last for-
ward propagation run. The LSTM’s structure has been later successfully applied
to time series to find that its internal mechanisms let it model very long time
dependencies.

LSTM does so by minimizing the vanishing gradient problem, very common
in deep learning models, like the recurrent neural networks. The vanishing gra-
dient problem is detailed in [6]. It prevents a neural network from continuing to
learn beyond a certain point due the lack of effect from layers which are furthest
from the output.

An LSTM cell consist of a relatively complex data pipeline that makes it
able to remember an internal state, while operating on input data to compute its
output. The pipeline is composed of activation functions that filter and transform
data; and additive and multiplicative operations that merge and also transform
data.

In Fig. 1, a more detailed description of the contemporary pipeline, also
referred to as Vanilla LSTM [5] and firstly described in [4], can be found. Com-
paring this LSTM with the original one, presented in [7], two main additions can
be easily seen:



272 D. Trujillo Viedma et al.

Fig. 1. Schematic of an LSTM cell.

Forget gate Introduced in [3], this gate demonstrated to be crucial to improve
LSTM performance, at the cost of increasing the total number of parameters
to train.

Peephole connections Data from inside the cell is made available through
peephole connections to the gates, so data can be better refined before enter-
ing the cell.

Figure 1 also gives an easy way to understand how data flows inside the cell:
The input data flows from the leftmost input gate to the output of the cell,
located at the opposite side. In between, it is transformed by means of pointwise
multiplications with values provided by additional gates, each one trained to
filter data in a particular way: the input gate filter the input data to prevent
noise coming from outside the cell disturb the memorized value, while the output
gate performs a final filtering to protect next layer cells from bad memorized
values.

Also, an internal loop can be appreciated, regulated by the forget gate. This
is called CEC (Constant Error Carousel), and constitutes the mechanism by
which the LSTM memorizes knowledge for managing long term dependencies.
This memorized value can be influenced by new input data, but also filtered
through the forget gate.

The data (both new and recurrent entries) flowing through the pipeline
described in Fig. 1 first enter the cell through, performing the computations
on the four input gates, then is merged by means of multiplicative and additive
(pointwise or scalar) operations and then, feeded to a final activation function
like an ordinary neural cell.

LSTM neural cells are commonly trained using the well-known BPTT (Back-
propagation Through Time) algorithm [11], which models the contribution of
each network parameter to the final error and greedily modifies it so the error is
minimized.



A First Approximation to the Effects of Classical Time Series 273

3 Preprocessing Methods

Traditional time series data mining algorithms greatly improve their perfor-
mance when are trained with a preprocessed dataset. ARIMA is one of these
methods, whose prediction accuracy increases when the original time series is
decomposed into trend, seasonal, and random components, and are analyzed
separately. Typically, the preprocessing methods achieving better results have
been:

Significant lags detection Adds additional values to every instance. More
precisely, this new values are the very same time series, but lagged at cer-
tain times. As a drawback, the values corresponding to the most earliest time
steps must be dropped or predicted, because the lack of real lagged data for
the first values of the dataset.

Trend component removal A trend component in the time series is detected
and removed. Trend removal may be useful to palliate the effect of the mag-
nitude of the variable, but can be affected by abrupt variations on the time
series. This preprocessing method feeds the network with values that are not
present on the original time series (the actual real value of the series is never
given to the network, but the result of the chosen transformation), so the
network output prediction has to be rebuilt to revert this transformation.

Seasonal component removal A seasonal component in the time series is
detected and removed. Like in the trend case, the input values are transformed
when deleting the seasonal component, si the output of network trained with
these versions of the original time series must be, as well, rebuilt.

4 Experiments and Results

Several experiments have been conducted to extract enough data to establish
a comparison between the chosen preprocessing methods. The details regarding
this experimentation are introduced below.

4.1 Error Metric

In order to compare the performance of the model, a quality measure of the
prediction must be established. One broadly used method to quantify this is
through an error measure, and then following the less is best criteria. RMSE
(Root Mean Squared Error) is a well known error metric that emphasizes the
deviations more than others. It is computed as follows: given T the true values
of the time series, and P the predicted ones, RMSE can be described as:

RMSE(T, P ) =
√
MSE(T, P ) (1)

MSE(T, P ) =
∑n

i=1(Ti − Pi)2

n
(2)



274 D. Trujillo Viedma et al.

years

1965 1970 1975

25
0

35
0

(a) 22l8

day

0 500 1000 1500

−3
0

0
20

(b) 235d

years

1960 1962 1964 1966 1968

50
00

20
00

0

(c) 22n4

years

1962 1966 1970 1974
60

0
80

0

(d) 22ox

years

1965 1970 1975 1980

32
0

33
0

34
0

(e) 22v1

4 week period

0 10 20 30 40 50

20
00

0
30

00
0

(f) 2325

Fig. 2. Plots of the datasets considered

4.2 Datasets

In this work, 6 datasets from the Time Series Data Library [8] have been used.
As it can be seen in Fig. 2, in general terms they expose a trending and seasonal
behavior. This election of datasets has been made to maximize the effect of the
preprocessing methods considered. In Table 1 descriptions of several aspects of
them are included.

The size of these public, well-known time series, is small enough to let all
the experimentation run in an acceptable time window while using relatively
time-consuming models like the ones that are being trained.



A First Approximation to the Effects of Classical Time Series 275

Table 1. Datasets

Code Description Resolution Period length Dates

22l8 Wisconsin employment Monthly 12 Jan. 1961

Oct. 1975

22n4 Car sales in Quebec Monthly 12 Jan. 1960

Dec. 1968

22ox Milk production: pounds
per cow

Monthly 12 Jan. 1962

Dec. 1975

22v1 CO2 (ppm) mauna loa Monthly 12 Jan. 1965

Dec. 1980

235d Mean temperature, Fisher
River near Dallas

Daily 365 Jan. 1, 1988

Dec. 31, 1991

2325 Totals of beer shipments Four-weekly 14 Week 2, 1970

Week 49, 1973

Table 2. Hyperparameters

Num. of LSTM Epochs Batch size Topology Repetitions

10 200 1 Dense 10

For evaluation purposes, these time series are divided into training and test
sets, the latter being formed by the last 24 observations of the series (the most
recent ones), whilst the rest of the instances fall into the training dataset.

These datasets constitute the raw data from which a baseline for comparison
has to be set. Several versions of each one will be computed accordingly to the
preprocessing methods that have been selected. The creation procedure and the
instance form for each of these variants are detailed in Subsect. 4.4.

4.3 Model

The experiments have been coded in Python, making use of the Keras library
with the TensorFlow backend and the Scikit-learn library for error computing.
A single set of hyperparameters has been heuristically selected, after performing
several tests, and taking execution time concernings into account. These chosen
hyperparameters can be seen in Table 2.

Preliminar experiments did not achieve better accuracy after increasing the
number of LSTM cells. On the other hand, given the relatively small size of the
time series being considered, it is possible to set a small value for the batch size
parameter. Low values have a great negative impact on the execution time, but
because of the size of the datasets and the available computational power, a
value of 1 is possible.



276 D. Trujillo Viedma et al.

Several repetitions of the experiments have to be made because of the ran-
dom strategy the training algorithm follows to initialize the weights of the LSTM
network. In order to minimize the effect of an accidentally advantageous initial
weight configuration by luck, 10 repetitions have been made, and then con-
clusions are extracted from a summarization statistic. This also improves the
generalization of our conclusions, which are not tied to a particular execution.

4.4 Preprocessing Methods

For each one of the distinct time series considered, several datasets have been
created, as a result of applying a preprocessing method to the original time
series. These versions are introduced below.

Raw Time Series. This is a trivial identity preprocessing. The original time
series remains unchanged. It is interesting to test the LSTM network with raw,
unpreprocessed data, in order to set a baseline to which compare the rest of the
non-trivial preprocessing methods.

The definition of an instance is also trivial, but will serve as an introduction
to the notation of the definition of the instances. The instances in these time
series have the form:

It = (t, Vt) (3)

Being:

t Is the time period this instance refers to.
It The instance of the dataset at time t.
Vt The value of the dataset at time t.

Lags. In the experimentation carried out, the lags considered for each time
depends on a very simple correlogram graph analysis consisting in selecting the
lags whose partial autocorrelation function value exceeds the statistically signif-
icant threshold. Also, the first values have been dropped, in order to keep the
lag window inside real data, instead of predicting those values and introducing
noise. These datasets have enough values to be dramatically affected by this
drop strategy.

The form of the lag-processed instances is defined as:

It = (t, Vt, Vt−l0 , . . . , Vt−ln) (4)

Being:

t Is the time period this instance refers to.
It The instance of the dataset at time t.
Vt The value of the dataset at time t.
l0, ..., ln The selected lags.



A First Approximation to the Effects of Classical Time Series 277

Trend. The trend component is removed by applying differentiation to the
dataset. This is done by subtracting a value from the time series to the following
one, so the differences between two consecutive values are given to the neural
network. Trend removal may be useful to palliate the effect of the magnitude of
the variable, but can be affected by abrupt variations on the time series.

After differentiate, the instances have the following form:

It = (t, Vt+1 − Vt) (5)

In the experiments carried out, the rebuild procedure for a particular instance
takes the value at the output of the neural network, and adds it to the true value
from the original dataset, so errors are not accumulated, which is a usual problem
when relying solely on the network output values, and applying cumulative sum.

Seasonal. For this preprocessing method, a very simple and intuitive seasonal
component detection and deletion procedures have been adopted. Then, that
de-seasonalized time series have been fed to the neural network.

The detection of the seasonal component in a given dataset is performed by
calculating the average of the values at the same position relative to the start of
a period (it is a prerequisite that the time series period length is known).

Then, once the seasonal component has been modelled, seasonality is removed
by subtracting the corresponding value of the modelled seasonality to the value
of the series:

Dt = Vt − su=mod(t,l) (6)

Being:

Dt Deseasonalized value at time t.
su Detected seasonality component value at position u.
l Period length, detected seasonality component length.

The instance for this particular preprocessing method is described as follows:

It = (t,Dt) (7)

Just like in the trend case, transformed values are fed to the neural network,
so another rebuilt has to be performed. This is done just by adding the previously
detected seasonal component to each value on the prediction.

4.5 Results

In Table 3, average, standard deviation and variation of the error from each set
of experiments can be found. These statistics are highlighted when the average
of a preprocess improves the accuracy of the raw methodology. As pointed out
in Subsect. 4.3, each value summarize 10 repetitions of the corresponding set
of experiments that have been performed. The variation is calculated relative
to the raw average statistic, so predictive performance can be compared across
multiple datasets.



278 D. Trujillo Viedma et al.

Table 3. LSTM RMSE

Dataset Statistic Raw Lags Trend Seasonal

22l8 Average 8,982 14,453 7,528 3,517

Std. Dev. 0,334 1,803 0,226 0,520

Var. 60,909% −16,181% −60,844%

22n4 Average 3841,427 2944,574 4088,950 1705,087

Std. Dev. 19,440 152,559 16,493 12,934

Var. −23,347% 6,443% −55,613%

22ox Average 45,148 20,453 35,900 12,363

Std. Dev. 0,194 2,102 1,074 0,756

Var. −54,699% −20,485% −72,616%

22v1 Average 0,830 0,562 0,874 0,639

Std. Dev. 0,031 0,060 0,003 0,059

Var. −32,32% 5,26% −23,04%

235d Average 5,317 9,931 5,437 4,667

Std. Dev. 0,019 0,205 0,021 0,037

Var. 86,794% 2,263% −12,225%

2325 Average 2970,936 2221,160 2998,783 1778,490

Std. Dev. 42,565 111,955 13,650 34,674

Var. −25,237% 0,937% −40,137%

Analyzing average statistic values, we find out that the lagged preprocessing
method makes the LSTM to predict better most of the cases. Something similar
happens to the seasonal analysis, but with a more consistent behaviour: bet-
ter LSTM performance is achieved in all cases studied. By contrast, the trend
preprocessing method achieves almost the same performance.

In the case of datasets 22l8 and 235d, lagged preprocessing performs surpris-
ingly bad, with almost double the error achieved without any data treatment.
Taking a closer look at the plots (Figs. 2a and b) shows, for the dataset 235d,
several differences between periods of a strong seasonal component, which may
cause this preprocess to fail. On the other hand, on dataset 22l8 we found what
probably is a slight concept drift at the end of the time series, falling most of
it in the test partition. In the case of the trend analysis, two of the datasets
with the strongest trend component, 22ox and 22l8, performs better than the
raw training.

Looking at the standard deviation there is a large variability between the
lagged preprocessing and the other ones, including the experiments made with
raw time series. In a general sense, both the trend and the seasonal analysis have
a standard deviation comparable with the raw time series experimentation. The
unusual variability on the 22ox dataset may be explained by the stabilization of
the overall trend observed at the last 5 years of the time series.



A First Approximation to the Effects of Classical Time Series 279

5 Conclusion

LSTM neural networks are being actively used recently, while being proposed
time ago. In this work, a preliminar experimentation has been conducted to
quantify how much this kind of networks are affected by the use of several pre-
processing methods in the context of time series forecasting.

Performing a trend deletion (differentiation) on the input time series usually
has no effect on the accuracy, compared with a raw time series. A lagged dataset,
unlike a differentiated one, can make the LSTM predict better in some cases,
while severely worsening it in other cases. Further work would be needed to
determine theses cases. On the other hand, a seasonal component removal has
achieved an important accuracy gain on all the datasets considered, dropping
the error below a 50% of the raw time series error in many cases. Our results
show that special care has to be taken with lags and differentiating preprocessing
methods, in which a severe performance drop has been seen with some datasets.
In the case of the seasonal component removal preprocessing method, a more
robust, accurate predictive behavior has been found.

Acknowledgement. This work is partially supported by the Spanish Ministry of
Science and Technology under project TIN2015-68454-R.

References

1. Box, G.E., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-
Day Series in Time Series Analysis. Holden-Day, San Francisco (1976). Revised
edition

2. Famili, A., Shen, W.M., Weber, R., Simoudis, E.: Data preprocessing and intelli-
gent data analysis. Intell. Data Anal. 1(1), 3–23 (1997). https://doi.org/10.3233/
IDA-1997-1102

3. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12(10), 2451–2471 (2000). https://doi.org/10.1016/
j.neunet.2014.09.003

4. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610
(2005). https://doi.org/10.1016/j.neunet.2005.06.042

5. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10),
2222–2232 (2017). https://doi.org/10.1109/TNNLS.2016.2582924

6. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al.: Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies (2001)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Hyndman, R.J., Akram, M.: Time series data library (2010). http://robjhyndman.
com/TSDL

9. Hyndman, R.J., Khandakar, Y., et al.: Automatic time series for forecasting: the
forecast package for R. No. 6/07, Monash University, Department of Econometrics
and Business Statistics (2007). https://doi.org/10.18637/jss.v027.i03

https://doi.org/10.3233/IDA-1997-1102
https://doi.org/10.3233/IDA-1997-1102
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1109/TNNLS.2016.2582924
http://robjhyndman.com/TSDL
http://robjhyndman.com/TSDL
https://doi.org/10.18637/jss.v027.i03


280 D. Trujillo Viedma et al.

10. Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Data preprocessing for supervised
leaning. Int. J. Comput. Sci. 1(2), 111–117 (2006)

11. Werbos, P.J.: Generalization of backpropagation with application to a recurrent
gas market model. Neural Netw. 1(4), 339–356 (1988). https://doi.org/10.1016/
0893-6080(88)90007-X

https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1016/0893-6080(88)90007-X

	A First Approximation to the Effects of Classical Time Series Preprocessing Methods on LSTM Accuracy
	1 Introduction
	2 LSTM
	3 Preprocessing Methods
	4 Experiments and Results
	4.1 Error Metric
	4.2 Datasets
	4.3 Model
	4.4 Preprocessing Methods
	4.5 Results

	5 Conclusion
	References




