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Abstract
Machine learning is a field which studies howmachines can alter and adapt their behavior, improving their actions according to
the information they are given. This field is subdivided intomultiple areas, amongwhich the best known are supervised learning
(e.g., classification and regression) and unsupervised learning (e.g., clustering and association rules). Within supervised
learning, most studies and research are focused on well-known standard tasks, such as binary classification, multi-class
classification and regression with one dependent variable. However, there are many other less known problems. These are
what we generically call nonstandard supervised learning problems. The literature about them is much more sparse, and each
study is directed to a specific task. Therefore, the definitions, relations and applications of this kind of learners are hard to
find. The goal of this paper is to provide the reader with a broad view on the distinct variations of nonstandard supervised
problems. A comprehensive taxonomy summarizing their traits is proposed. A review of the common approaches followed
to accomplish them, and their main applications are provided as well.

Keywords Machine learning · Supervised learning · Nonstandard learning

Mathematics Subject Classification 68T05 · 68T10

1 Introduction

According to Mitchell [79], a machine is said to learn from
experience E related to a class of tasks T and performance
metric P , when its performance at tasks in T improves
according to P after experience E .

Supervised learning is one of the fundamental areas of
machine learning [77]. From object detection to ecologi-
cal modeling to emotion recognition, it covers all kinds of
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applications. It essentially consists in learning a function by
training with a set of input–output pairs. The training stage
can be seen as E in the previous definition, and the specific
task T may vary, but usually involves predicting an appro-
priate output given a new input.

Traditionally, supervised learning problems have been
spread into two categories: classification and regression
[43,59]. In the first, information is divided into discrete cat-
egories, while the latter involves patterns associated with a
value in a continuous spectrum.

These problems can be processed by learning from a
training dataset, which is composed of instances. Typically,
these instances or samples take the form (x, y) where x is
a vector of values in the space of input variables and y is a
value in the target variable. Each problem can be described
by the type of its instances: inputs will usually belong to
a subset of Rn , and outputs will take values in a specific
one-dimensional set, finite or continuous. Once trained, the
obtained model can be used to predict the target variable on
unseen instances.

Standard classification problems are those where labels
are either binary or multi-class [33,105]. In the binary case,
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an instance can only be associated with one of two values:
positive or negative, which is equivalent to 0 or 1. For exam-
ple, email messages may be classified into spam or legit, and
tumors can be categorized as either benign or malign. Multi-
class problems, on the other hand, involve any finite number
of classes. That is, any given instance will belong to one
of possibly many categories, which is equivalent to it being
assigned a natural number below a convenient threshold.
As an example, a photograph of a plant or a sound record-
ing from an animal could correspond to one of a variety of
species.

A standard regression problem [60,99] consists in finding
a function which is able to predict, for a given example, a real
value among a continuous range, usually an interval or the
set of real numbers R. For example, the height of a person
may be estimated out of several characteristics such as age
or country of origin.

Even though these standard problems are applicable
in a multitude of cases, there are situations whose cor-
rect modeling requires modifications of their structure. For
example, a newspaper article can be categorized according
to its contents, but it could be desirable to assign sev-
eral categories simultaneously. Similarly, a social media
post could be described by not one but two input vec-
tors, an image and a piece of text. These special circum-
stances cannot be covered by the traditional one-vector
input and one-dimensional output schema. As a conse-
quence, since performance metrics which measure improve-
ments in standard tasks assume the common structure,
they lose applicability or sense in these cases. Thus, not
only new techniques are needed to tackle the problems,
but also new ways of measuring and comparing their suc-
cess.

This work studies variations on classic supervised prob-
lems where the traditional structure is not obeyed, which
we call nonstandard variations. These emerge when the
structure of the classical components of the problems does
not suffice to describe complex situations, such as mul-
tiplicity of inputs or outputs, or order restrictions. As a
consequence, this manuscript does not cover other singu-
lar supervised problems, such as high dimensionality of the
feature space [10] or unbalanced training sets [40,66], nor
time-dependent problems, such as data streams [45,98] or
time series [57].

The rest of the paper is structured as follows: Sect. 2 for-
mally defines and describes each nonstandard variation. This
is followed by Sect. 3 establishing relations among the intro-
duced problems and proposing a taxonomy of them. Section
4 describes the most common techniques used to solve them.
After that, Sect. 5 enumerates popular applications of each
problem. Section 6 covers other variations further from the
ones previously detailed. Lastly, Sect. 7 draws some conclu-
sions.

2 Definitions of nonstandard variations

The problems introduced in this section are generalizations
over the traditional versions of classification and regression.
The focus is on fully supervised problems, where inputs are
always paired with outputs during training. An alternative
taxonomy based on different supervision models is intro-
duced in [53].

2.1 Notation

In this work, we will establish a notation which intends to
be as simple to understand as possible, while being able to
encompass every nonstandard variation. First, any supervised
learning problem consists in finding a function which will
classify, rank or perform regression. It will be noted as

f : X → Y (1)

where X is an input set, or domain, and Y is an output set,
or codomain. It will be assumed that a training dataset S is
provided, including a finite number of input–output pairs:

(x, y) ∈ S ⊂ X × Y . (2)

This way, a learning algorithm will be able to generate the
desired function f . An additional notation will be the set of
labels L where convenient.

For example, in standard binary classification X ⊂ R
n and

Y = L = {0, 1}. Similarly, standard regression problems
can be defined with the same kind of X set and Y ⊂ R.
Thus, we can define very distinct supervised problems by
particularizing sets X or Y in different ways.

Other usual notations are based in probability theory, thus
involving random variables and probability distributions [82,
115]. In that case, X and Y would be the sample spaces of the
input and output variables X and Y, respectively. Predictors
would usually attempt to infer a discriminant model P(Y|X)

from the training dataset.

2.2 Multi-instance

The multi-instance (MI) framework [55] assumes a single
feature space for all instances, but each training pattern may
consist of more than one instance. In this case, a training
pattern is composed of a finite multiset or bag of instances
and a label. Formally, assuming instances are drawn from a
set A ⊂ R

n , the domain can be described as follows:

X = {b ⊂ A | b finite} . (3)

In this case, the learning algorithm will not know labels
associated to each instance but to a bag of them. In addition
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to this, not all instances may share the same relevance or are
equally related to the label.

Some MI problems assume that hidden labels are present
for each instance in a bag: for example, a training set of drug
tests where, for each test, several drug types are analyzed.
Additionally, a typical MI assumption in the binary scenario
states that a bag is positive when at least one of its instances
is positive, and it is negative otherwise [41].

Other MI problems differ in that a per-instance labeling
may not be possible or may not make sense: for example, if
each bag represents an image and instances are image seg-
ments, class beach can only apply to bags with water and
sand segments, but it cannot apply to an individual instance.

2.3 Multi-view

A learning problem is considered to be multi-view (MV)
[120] when inputs are composed of several components of
very different nature.

For example, if a learning pattern consists of an image as
well as a piece of text representing the same instance, they
can be seen as two views on it. In that case, images and texts
would belong to distinct feature spaces A and B, respectively,
an input pattern being (a, b) ∈ A × B . More generally, we
can describe the input space as:

X =
t∏

i=1

Ai , where Ai ⊂ R
ni , (4)

where t is the number of views offered by the problem and
ni is the dimension of the feature space of the i-th view.

2.4 Multi-label

Themulti-label (ML) learning field [47,54] studies problems
related to simultaneously assigningmultiple labels to a single
instance. That is, ifL = {l1, . . . , l p} the codomain consists
of all possible selections of these p labels, also known as
labelsets:

Y = 2L ∼= {0, 1}p . (5)

As shown by this formulation, it is equivalent to think of a
selection of labels as a subset ofL and as a binary vector. For
example, the labelset composed of the first and third labels
can be represented either by {l1, l3} or (1, 0, 1, 0, . . . , 0).

The difference that arises when comparing ML problems
to binary or multi-class ones is that labels may interact with
each other. For example, a news piece classified in economy
is more likely to be labeled politics than sports. Similarly, a
photograph labeled ocean is less likely to have themountains
label rather than beach. Methodsmay take advantage of label

co-occurrence [18] in order to reduce the search space when
predicting a labelset.

A constrained version of ML classification is hierarchical
ML classification [97], where labels are organized in a class
hierarchy, usually a tree or a direct acyclic graph. A predicted
labelset for a given instance is only consistent if parents of
all labels in the labelset are also predicted.

2.5 Multi-dimensional

Multi-dimensional (MD) learning [95] is a generalized
classification problem where categorization is performed
simultaneously along several dimensions. Each instance can
belong to one of many classes in each dimension; thus, the
output space can be formally described as:

Y = L1 × L2 × · · · × Lp, (6)

where Li is the label space for the i-th dimension.
As with ML learning, label dimensions may be related in

some way and treating them independently would only be a
naive solution to the problem.

2.6 Label distribution learning

In label distribution learning (LDL) problems [46], otherwise
knownas probabilistic class label problems [74], any instance
can be described in different degrees by each label. This can
be modeled as a discrete distribution over the labels, where
the probability of a label given a specific instance is called its
degree of description. Analytically, the objective is, for each
instance, to predict a real-valued vector which sums exactly
1:

Y =
{
y ∈ [0, 1]p :

p∑

i=1

yi = 1

}
. (7)

In this case,wewould say that the i-th label inL describes
an instance (x, y) with degree yi .

2.7 Label ranking

In a label ranking (LR) problem [56,113], the objective is
not to find a function able to choose one or several labels
from the label space. Instead, it must evaluate their relevance
for each unseen instance. The most general version of the
problem involves a training set where Y is the set of all partial
orders ofL , and the obtained function also maps individual
instances to partial orders. Thisway, for each test instance the
function will output a sequence of preferences where some
labels will be seen as more relevant than others.

However, the typical situation in label ranking problems
is that the orders are total, which means any two labels can
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always be compared. This is called a ranking and does not
exclude the possibility of ties. When ties are not allowed, it
is said to be a sorting or permutation and can be formulated
as follows:

Y = {σ : {1, . . . , p} → L | σ is bijective} , (8)

where p is the amount of labels. Y can also be seen as the set
of all permutations of the labels inL , usually known as the
symmetric group of order p, and noted as Sp.

2.8 Multi-target regression

A regression problem where the output space has more than
just one dimension is usually called multi-target regression
(MTR) and is also known as multi-output, multi-variate or
multi-response [11]. In this case, a formal description is sim-
ply that the codomain is a continuous multi-dimensional real
set:

Y =
p∏

i=1

Yi , where Yi ⊂ R ∀i (9)

and p is the number of target variables.
As with other multiple target extensions, the key differ-

ence with single-target regression in this case is the possible
interactions among output variables.

2.9 Ordinal regression

A problem where the target space is discrete but ordered
is called ordinal regression (OR) or, alternatively, ordinal
classification [51]. It can be located midway between clas-
sification and regression. More specifically, it consists in
labeling instanceswith a finite number of choiceswhere these
are ordered

Y = {1, 2, . . . , c} , 1 < 2 < · · · < c. (10)

In OR, the training phase consists in learning from a set
of feature vectors which have a specific label associated
with them, and testing can be performed over individual
instances. This means that, although labels are ordered, the
main objective is not to rank or sort instances as in learning
to rank [13], but to simply classify them. The labels them-
selves do not provide anymetric information either; they only
carry qualitative information about the order among them-
selves.

2.10 Monotonicity constraints

Order relations can exist not only in the label space but in
the feature space as well. Partial orders among real-valued

feature vectors are always possible, and there may be cases
where the order among instances is determined by just one
or a few of their attributes.

When inputs as well as outputs are at least partially
ordered, it is common to look for predictions which respect
their order relations. In that case, the objective is to obtain a
classifier or regression functionwhich enforces the following
constraint:

x1 < x2 ⇒ f (x1) < f (x2) ∀x1, x2 ∈ X . (11)

When Y is discrete, the problem is usually called mono-
tone classification (MC), monotonic classification or ordinal
classification with monotonicity constraints [50]. If, on the
contrary, Y is continuous, it is known as isotonic regression
(IR) [6].

2.11 Absence or partiality of information

Some problems do not directly alter the structure of X and Y
from the standard supervised problem. Instead, they restrict
which data can belong to a training set, or remove labelings
from training examples. In this case, training information is
presented partially or with some exclusions.

According to which kind of information is missing from
the training set, a learning task can usually be categorized as
semi-supervised [16], one-class learning [80], PU-learning
[37], zero-shot learning [85] or one-shot learning [39]. These
are described further in Sect. 6.1.

2.12 Variation combinations

Some of the components described above can be combined
to compose a more complex problem overall. Usually, one
of these combinations will take components from different
variation types, for example, simultaneous multiplicity of
inputs and outputs.

More specifically, there exist several studies involving MI
MLscenarios [103,122]. In this case, examples from the input
space are composed of several feature vectors and are asso-
ciated with various labels. As a consequence, this model can
represent many complicated problems where inputs and out-
puts have more structure than usual.

Other more uncommon situations are MV MI ML prob-
lems [83], where patterns have several instances which may
or may not belong to the same space, a multi-output ver-
sion of OR named graded ML classification [22] and more
complex input structures such as multilayer MI MV [116],
where a hierarchy of instances is present in each exam-
ple.
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Multiple outputs
(ML, LR, MD,

LDL, MTR) 

Order constraints
(OR, MC, IR) Standard problem

Partial information
(SSL, PU, 0-shot,  

1-shot, 1-class) 

Multiple inputs
(MI, MV) 

Fig. 1 Extensions of the standard supervised problem: multiple inputs
or outputs, presence of orders and rankings, and partial information

3 Taxonomy

A first categorization of the variations analyzed in this work
can be made according to how they differ from the stan-
dard problem. There can be multiplicity in the input space
or the output space, order constraints may exist, or only par-
tial information may be given in some cases. Figure 1 shows
ways in which the traditional problems can be generalized.

Problems introducing multiple inputs are MI and MV,
whereas multiple outputs can be found on ML, MD, LR,
LDL and MTR. Problems where orders are present are
OR, MC and IR. Likewise, tasks with only partial infor-
mation are, among others, semi-supervised learning (SSL),
positive-unlabeled (PU) learning, one-shot classification and
zero-shot classification.

Finally, a generalized problem can be built out of com-
bining several of these components: for example, a multiple-
input multiple-output problem where the inputs and outputs
can belong to structures like the ones defined above.

The rest of this section studies variations on the structure of
the input space and output space, establishes relations among
problems and describes how they can be particularized or
generalized to one another.

3.1 Input structure

In a standard supervised problem, the input space consists of
single feature vectors and does not impose a specific order.

Problems where learning patterns are composed of mul-
tiple instances can usually be categorized into either MI, if
the inputs share the same structure, or MV, otherwise. Their

Fig. 2 Traits that can be found on the input structure of supervised
problems

combination can also be considered as well, e.g., a problem
where an example is composed of one or more photographs
and one or more pieces of text. This would be a case of a MV
MI problem.

There are also problems where there exists a partial or
total order among instances, which is coupled with an order
constraint in relation to the outputs. These are MC and IR.

Figure 2 summarizes these structural traits in a hierarchy
and indicates problems where these traits are present.

3.2 Output structure

The diversity in output variations is higher than that of the
input ones. A first sorting criterion is whether the codomain
is discrete or continuous. This way, problems are either clas-
sification or regression ones.

Further subdivision of problems allows to separate these
traits according to whether outputs remain scalars or become
vectors. In the first case, we consider order in the discrete
scenario a nonstandard variation, which is present in OR and
MC. In the second case, classification problems are spread
into ML, LR and MD, and regression ones into LDL and
MTR.

Figure 3 organizes these traits in a hierarchy based on the
previous criteria. Each leaf of the tree also includes problems
where each one is present.

The variations in the structure of target spaces in super-
vised problems can be seen as generalizations of the standard
problems. Furthermore, some of them are also more general
than others. For example, ML problems can be seen as LR
ones where, for a given instance, labels over a threshold are
active and those below are not. Thus, LR is a generalization
of the ML scenario. More relations of this kind are displayed
in Fig. 4.
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Fig. 3 Traits that can be found on the output structure of supervised problems

Fig. 4 Relations among supervised problems according to output
structure. Arrows follow natural generalizations from one problem to
another. Continuous arrows denote generalizations based on adding
more variables of the same type. Dashed arrows indicate generaliza-
tions based on modifying existing target variables

As shown in the graph, an inclusion of more target vari-
ables of the same type transforms a binary problem into ML,
a multi-class problem into MD and a single-target regression
one into MTR. Similarly, inclusion of more values into each
variable allows to generalize binary problems to multi-class,
and ordinal to single-target regression, as well as ML ones to
MD and these to MTR. LDL can be seen as a generalization
of ML where real numbers between 0 and 1 are also allowed
as values for a label. LR is a generalization of ML by the
argument discussed before.

3.3 Summary

In this section, input and output variations of standard super-
vised problems have been categorized and related. Table 1
allows to identify specific problems according to which input
and output traits are present.

4 Common approaches to tackle
nonstandard problems

When tackling a nonstandard problem, most techniques fol-
low one of two main approaches: problem transformation
or algorithm adaptation. The first one relies on appropriate
transformations of the data which result in one or more sim-

pler, standard problems. The latter implies an extension or
development of previously existing algorithms, in order to
adapt them to the complexities induced by the structure of
the data.

In the following subsections, several methods based on
both approaches are enumerated for each analyzed problem.

4.1 Problem transformation

Problem transformation methods assume that a solution
can be achieved by extracting one or more simpler prob-
lems out of the original one. For example, a problem with
multi-dimensional targets could be transformed into many
problems with scalar outputs. Then, these problems could
be solved independently by a classical algorithm. A solution
for the original problem would be the concatenation of those
extracted from the simpler ones.

Next, the most common transformation techniques are
described for each nonstandard supervised learning task pre-
viously introduced.

– MI. The taxonomy proposed in [3] describes an embedded
space paradigm, where each bag is transformed into a single
feature vector representing the relevant information about the
whole bag. This transformation brings the MI problem into
a single-instance one. Most of these methods are vocabulary
based,whichmeans that the embedding uses a set of concepts
to classify each bag according to its instances, resulting in a
single vector with one component per concept.
– MV. Some naive transformations consist in ignoring every
view except one, or concatenating feature vectors from all
views, thus training a single-view model in both cases [67].
A preprocessing based on canonical correlation analysis [19]
is able to project data from multiple views onto a lower-
dimensional, single-view space.
– ML. Transformation methods for ML classification [118]
are diverse: Binary Relevance trains separate binary classi-
fiers for each label. Label Powerset reduces the problem to a
multi-class oneby treating each individual labelset as an inde-
pendent class label, and Random k-Labelsets [108] extract
an ensemble of multi-class problems similarly. Classifier
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chains [90] trains subsequent binary classifiers accumulat-
ing previous predictions as inputs. ML problems can also be
transformed to LR [44].
– MD. In some cases, independent classifiers can be trained
for several dimensions [86,95], but this method ignores pos-
sible correlations among dimensions. An alternative trans-
formation, building a different label from each combination
of classes, would produce a much larger label space and thus
is not typically applied.
– LDL.A LDL problem can be reduced to multi-class classi-
fication by extracting asmany single-label examples as labels
for each one of the training instances [46]. These new exam-
ples are assigned a class corresponding to each label and
weighted according to its degree of description. During the
prediction process, the classifier must be able to output the
score/confidence for each label, which can be used as its
description degree.
– LR.A reduction in this problem to several binary problems
can be achieved by learning pairwise preferences [56]. This
transforms a c-label problem into c(c−1)/2 binary problems
describing a comparison among two labels. An alternative
reduction by means of constraint classification [52] builds a
single binary classification dataset by expanding each label
preference into a new positive instance and a new negative
instance. The feature space of the new binary problem has
dimension nc, where n is the original dimension and c the
number of labels, due to the constraints embedded in it by
Kesler’s construction [84].
– MTR. There are several ways to transform a MTR problem
into several single-target regression ones. Some of them are
inspired by the ML field, such as a one-vs-all single-target
reduction, multi-target stacking and regressor chains [101].
All of them train single-target regressors for several extracted
problems and then combine the obtained predictions. A dif-
ferent approach based on support vectors [119] extends the
feature space which expresses the multi-output problem as a
single-target one that can be solved using least squares sup-
port vector regression machines.
– OR. An ordinal problem with c classes can be transformed
into c− 1 binary classification problems by using each class
from the second to the last one as a threshold for the pos-
itive class [42]. This decomposition can be called ordered
partitions and is not the only possible one: others are one-
vs-next, one-vs-followers and one-vs-previous [51]. Several
3-class problems can also be obtained by using, for the i-th
problem, classes “li”, “< li” and “> li”.
– MC. The authors in [64] describe a procedure to tackle
binary MC problems by means of IR. Multi-class MC cases
can be reduced to several binary MC ones, which in turn are
solved as IR problems.
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4.2 Algorithm adaptation

Existing methods for classical problems can be extended in
order to introduce the necessary complexities of nonstandard
variations. As an example, nearest neighbor methods could
be coupled with new distance metrics in order to be able to
measure similarity among multiple inputs.

The rest of this section presents some algorithm adapta-
tions which can be used to tackle nonstandard supervised
tasks.

– MI. Methods that work on instance level are adapta-
tions of algorithms from single-instance classification whose
responses are then aggregated to build the bag-level classifi-
cation [3]. They typically assume that one positive instance
implies a positive bag. Adaptations of common algorithms
have been proposed with support vector machines (SVM) [4]
and neural networks [89], whereas some original methods in
this area are Axis-Parallel Rectangles [31] and Diverse Den-
sity [76]. In the bag-space paradigm, methods treat bags as
a whole and use specific distance metrics with distance- as
well as kernel-based classifiers, such as k-nearest neighbor
(k-NN) [114] or SVM [121].
– MV. Supervised methods for MV are comparatively less
developed than semi-supervised ones. Nonetheless, there is
an extension of SVM [38] which simultaneously looks for
two SVMs, one in each of the feature spaces of a two-view
problem. There is an extension of Fisher discriminant anal-
ysis as well [20].
– ML. The most relevant algorithm adaptations [118] are
based on standard classification algorithms with added sup-
port for choosing more than one class at a time: adaptations
exist for k-NN [117], decision trees [24], SVMs [36], asso-
ciation rules [106] and ensembles [81].
– MD. Specific Bayesian networks have been proposed for
the MD scenario [8,26], as well as maximum entropy-based
algorithms [86,95].
– LDL. Proposals in [46] are adaptations of k-NN, with a spe-
cial derivation of the label distribution of an unseen instance
given its neighbors, and backpropagated neural networks,
where the output layer indicates the label distribution of an
instance. Other proposed methods are based on the optimiza-
tion algorithms BFGS and improved iterative scaling.
–LR.Boostingmethods have been adapted toLR [28], aswell
as the SVM proposed in [36] for ML which can be naturally
extended to LR [113]. An adaptation of online learning algo-
rithms such as the perceptron has also been developed [94].
–MTR. First methods able to treat MTR problems were actu-
ally generalizations of statistical methods for single-target
regression [58,111]. Other common methods which have
been extended to predict multiple regression variables are
support vector regression [92,112], kernel-based methods
[1,78], regression trees [27] as well as random forests [63].

– OR. Neural networks can be used to tackle OR with slight
changes in the loss function or the output layer [21,25]. Sim-
ilarly, extreme learning machines have also been applied to
this problem [30,93]. Common techniques such as k-NN or
decision trees have been coupled with global constraints for
OR [14], and extensions of otherwell-knownalgorithms such
asGaussian processes [23] andAdaBoost [72] have been pro-
posed as well.
– MC. Algorithm adaptations generally take a well- known
technique and add monotonicity constraints. For example,
there exist in the literature adaptations of k-NN [34], decision
trees [88], decision rules [9,29] and artificial neural networks
[96].

Table 2 gathers all the methods described previously to
tackle nonstandard supervised tasks.

5 Applications. Original real-world scenarios

The problems studied in this work have their origins in real-
world scenarios which are related below:

– MI. Problems modeled under MI learning are drug activ-
ity prediction [31], where each pattern describes a molecule
and its different forms are represented by instances; image
classification [3] and bankruptcy [65]. Most of the datasets
used in experimentations, however, are usually synthetic.
– MV. Some situations where data is described in multiple
views are multilingual text categorization [2], face detec-
tion with several poses [71], user localization in a WiFi
network [87], advertisements described by their image and
surrounding text [102] and image classification with several
color-based views and texture-based views [110].
– ML. Problems which fall naturally under the ML definition
are text classification under several categories simultane-
ously [61], image labeling [12], question tagging in forums
where tags can co-exist [17], protein classification [32], data
streams [100] and recommendation systems [70].
– MD. Applications of MD classification include classifica-
tion of biomedical text [95],where predicted dimensions for a
given document are its focus, evidence type, certainty level,
polarity and trend; gene function identification [8]; tumor
classification; and illness diagnosis in animals [26].
– LR. The field known as preference learning has been gain-
ing interest [56], and LR is one of the problems that falls
under this term. LR is also frequently applied in ML sce-
narios [44], where a threshold can be applied in order to
transform an obtained ranking into a labelset.
– LDL. Data with relative importance of each label appears
in applications such as analysis of gene expression levels in
yeast [35], or emotion description from facial expressions
[75], where a face can depict several emotions in different
grades.
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Table 2 Summary table of
presented methods according to
their type of approach

Task Problem transformation Algorithm adaptation

MI Embedded space [3] SVM [4,121]

Neural networks [89]

k-NN [114]

MV Canonical correlation analysis [19] SVM [38]

Fisher discriminant analysis [20]

ML Binary relevance [118] k-NN [117]

Label powerset [118] Decision trees [24]

Classifier chains [90] SVM [36]

Association rules [106]

Ensembles [81]

MD Independent classifiers [86,95] Bayesian networks [8,26]

Maximum Entropy [86,95]

LDL Multi-class reduction [46] k-NN [46]

Neural networks [46]

LR Pairwise preferences [56] Boosting [28]

Constraint classification [52] SVM [113]

Perceptron [94]

MTR ML inspired: one-vs-all, stacking, regressor chains [101] Generalizations [58,111]

Support vectors [119] Support vector regression [92,112]

Kernel-based [1,78]

Regression trees [27]

Random forests [63]

OR Ordered partitions [42] Neural networks [21,25]

One-vs-next, One-vs-followers, One-vs-previous [51] Extreme learning machines [30,93]

3-class problems [51] Decision trees [14]

Gaussian processes [23]

AdaBoost [72]

MC Reduction to IR [64] k-NN [34]

Decision trees [88]

Decision rules [9,29]

Neural networks [96]

–MTR.Applications modeled asMTR problems are diverse,
including modeling of vegetation condition in ecosystems
assigning several scores which depend on the vegetation
type [62], prediction of audio spectrums of wind tunnel tests
[68], and estimation of several biophysical parameters from
remote sensing images [109].
– OR. The most salient fields where OR can be found are
text classification [5], where the predicted variable may be
an opinion scale or a degree of satisfaction; image catego-
rization [107]; medical research [7]; credit rating [69]; and
age estimation [15].
– MC. Monotonicity constraints are found in problems
related to customer satisfaction analysis [49], in which over-
all appreciation of a product must increase along with the
evaluation of its features; house pricing [88]; bankruptcy risk
evaluation [48]; and cancer prediction [91], among others.

6 Other nonstandard variations

This section covers variations of the standard supervised
problemwhich are further from the central focus of this paper
less related to those above.

6.1 Learning with partial information

In a standard supervised classification setting, it is assumed
that every training example is labeled accordingly and that
there exist examples for every class that may appear in the
testing phase. When only a fraction of the training instances
are labeled, the problem is considered semi-supervised [16],
but generally there still exist labeled samples for each class.

In positive-unlabeled learning [37,73], however, labeled
examples provided within the training set are only positive.
Thismeans the learning algorithmonly knows about the class

123



10 Progress in Artificial Intelligence (2019) 8:1–14

Table 3 Partial information problems according to the kind of absence
in the training set

Trait Problem types

Presence of unlabeled instances Semi-supervised [16]

Positive-unlabeled [37]

No representation of some classes One-class [80]

Positive-unlabeled [37]

Zero-shot [85]

Scarce representation of some classes One-shot [39]

of positive instances, and unlabeled ones can have either
class.

A different scenario arises when the training set only con-
sists of negative (or only positive) instances, and no unlabeled
examples are provided. This is known as one-class classifica-
tion [80], and data of this nature can be obtained from outlier
detection applications, where positive examples are hardly
recorded.

A problem which may be seen as a generalization of
one-class classification is zero-shot learning [85], a situation
where unseen classes are to be predicted in the testing stage.
That is, the label space Y includes some values which are
not present in any training pattern, but the classifier must be
able to predict them. For example, if in a speech recognition
problem Y is the set of all words in English, the training set
is unlikely to have at least one instance for each word; thus,
the classifier will only succeed if it is capable of assigning
unlearned words to test examples.

A relaxation on the obstacles of zero-shot learning is
present in one-shot learning [39], where algorithms attempt
to generalize from very few (1 to 5) examples of each class.
This is a common circumstance in the field of image classifi-
cation, where the cost of collecting and labeling data samples
is high.

A classification of these problems according to the type
of missing information can be found in Table 3.

6.2 Prediction of structured data

The nonstandard variations described in this work generalize
traditional supervised problems where the predicted output
is at most a vector whose components take values in either
a finite set or R. Further generalizations are possible if other
kinds of structures are allowed. For example, the target may
take the form of an ordered sequence or a tree. In this case,
the problem usually enters the scope of structured prediction
[104], a generalization of supervised learningwheremethods
must build structured data associated with input instances.

A particular case of supervised problemwhich can be seen
under the umbrella of structured prediction is learning to rank
[13], which does not involve a label space as such. Instead,

training consists in learning from a set of feature vectors
with a series of preferences among them, that is, a partial or
total order in the training set. During testing, a set of feature
vectors is provided and the desired output is a ranking (with
a predefined number of relevance levels, allowing ties) or a
sorting (simply an ordering of the instances). This problem
differs from OR in that individual classifications are usually
meaningless: only relative distances among ranked instances
matter.

7 Conclusions

Traditional supervised learning comprises two well-known
problems in machine learning: classification and regression.
However, the multitude of applications which do not strictly
fit the structure of the standard versions of those problems
have favored the development of alternative versions which
are more flexible and allow the analysis of more complex
situations.

In this work, an overview of nonstandard variations of
supervised learning problems has been presented. A novel
taxonomy under several criteria has described relationships
among these variations, where the main differentiating prop-
erties are multiplicity of inputs, multiplicity of outputs,
presence of order relations and constraints, and partial infor-
mation. Afterward, common methods for tackling these
problems have been outlined and theirmain applications have
been mentioned as well. Finally, some additional variants
which were left out of the scope of the previous analysis
have been introduced as well.

Design of novel algorithms for nonstandard supervised
tasks is scarcer than adaptations and transformations, but
there exist some approximations and even more open
possibilities for tackling these from classical algorithmic
perspectives, such as probabilistic and heuristic methods,
information theory and linear algebra, among others.
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