
Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy,
models, software and guidelines

David Charte⁎,a, Francisco Charteb, Salvador Garcíaa, María J. del Jesusb, Francisco Herreraa,c

a Department of Computer Science and A.I., University of Granada, Granada, 18071, Spain
bDepartment of Computer Science, University of Jaén, Jaén, 23071, Spain
c Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

A R T I C L E I N F O

Keywords:
Autoencoders
Feature fusion
Feature extraction
Representation learning
Deep learning
Machine learning

A B S T R A C T

Many of the existing machine learning algorithms, both supervised and unsupervised, depend on the quality of
the input characteristics to generate a good model. The amount of these variables is also important, since
performance tends to decline as the input dimensionality increases, hence the interest in using feature fusion
techniques, able to produce feature sets that are more compact and higher level. A plethora of procedures to fuse
original variables for producing new ones has been developed in the past decades. The most basic ones use linear
combinations of the original variables, such as PCA (Principal Component Analysis) and LDA (Linear Discriminant
Analysis), while others find manifold embeddings of lower dimensionality based on non-linear combinations,
such as Isomap or LLE (Linear Locally Embedding) techniques.

More recently, autoencoders (AEs) have emerged as an alternative to manifold learning for conducting
nonlinear feature fusion. Dozens of AE models have been proposed lately, each with its own specific traits.
Although many of them can be used to generate reduced feature sets through the fusion of the original ones,
there also AEs designed with other applications in mind.

The goal of this paper is to provide the reader with a broad view of what an AE is, how they are used for
feature fusion, a taxonomy gathering a broad range of models, and how they relate to other classical techniques.
In addition, a set of didactic guidelines on how to choose the proper AE for a given task is supplied, together with
a discussion of the software tools available. Finally, two case studies illustrate the usage of AEs with datasets of
handwritten digits and breast cancer.

1. Introduction

The development of the first machine learning techniques dates
back to the middle of the 20th century, supported mainly by previously
established statistical methods. By then, early research on how to
emulate the functioning of the human brain through a machine was
underway. McCulloch and Pitts cell [1] was proposed back in 1943, and
the Hebb rule [2] that the Perceptron [3] is founded on was stated in
1949. Therefore, it is not surprising that artificial neural networks
(ANNs), especially since the backpropagation algorithm was redis-
covered in 1986 by Rumelhart, Hinton and Willians [4], have become
one of the essential models.

ANNs have been applied to several machine learning tasks, mostly
following a supervised approach. As was mathematically demonstrated
[5] in 1989, a multilayer feedforward ANN (MLP) is an universal ap-
proximator, hence their usefulness in classification and regression

problems. However, a proper algorithm able to train an MLP with
several hidden layers was not available, due to the vanishing gradient
[6] problem. The gradient descent algorithm, firstly used for convolu-
tional neural networks [7] and later for unsupervised learning [8], was
one of the foundations of modern deep learning [9] methods.

Under the umbrella of deep learning, multiple techniques have
emerged and evolved. These include DBNs (Deep Belief Networks) [10],
CNNs (Convolutional Neural Networks) [11], RNNs (Recurrent Neural
Networks) [12] as well as LSTMs (Long Short-Term Memory) [13] or AEs
(autoencoders).

The most common architecture in unsupervised deep learning is
that of the encoder-decoder [14]. Some techniques lack the encoder or
the decoder and have to compute costly optimization algorithms to find
a code or sampling methods to reach a reconstruction, respectively.
Unlike those, AEs capture both parts in their structure, with the aim
that training them becomes easier and faster. In general terms, AEs are

https://doi.org/10.1016/j.inffus.2017.12.007
Received 20 December 2017; Accepted 21 December 2017

⁎ Corresponding author.
E-mail addresses: fdavidcl@correo.ugr.es (D. Charte), fcharte@ujaen.es (F. Charte), salvagl@decsai.ugr.es (S. García), mjjesus@ujaen.es (M.J. del Jesus),

herrera@decsai.ugr.es (F. Herrera).

Information Fusion 44 (2018) 78–96

Available online 23 December 2017
1566-2535/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15662535
https://www.elsevier.com/locate/inffus
https://doi.org/10.1016/j.inffus.2017.12.007
https://doi.org/10.1016/j.inffus.2017.12.007
mailto:fdavidcl@correo.ugr.es
mailto:fcharte@ujaen.es
mailto:salvagl@decsai.ugr.es
mailto:mjjesus@ujaen.es
mailto:herrera@decsai.ugr.es
https://doi.org/10.1016/j.inffus.2017.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2017.12.007&domain=pdf

ANNs which produce codifications for input data and are trained so that
their decodifications resemble the inputs as closely as possible.

AEs were firstly introduced [15] as a way of conducting pretraining
in ANNs. Although mainly developed inside the context of deep
learning, not all AE models are necessarily ANNs with multiple hidden
layers. As explained below, an AE can be a deep ANN, i.e. in the stacked
AEs configuration, or it can be a shallow ANN with a single hidden
layer. See Section 2 for a more detailed introduction to AEs.

While many machine learning algorithms are able to work with raw
input features, it is also true that, for the most part, their behavior is
degraded as the number of variables grows. This is mainly due to the
problem known as the curse of dimensionality [16], as well as the justifi-
cation for a field of study called feature engineering. Engineering of
features started as a manual process, relying in an expert able to decide by
observation which variables were better for the task at hand. Notwith-
standing, automated feature selection [17] methods were soon available.

Feature selection is only one of the approaches to reduce input space
dimensionality. Selecting the best subset of input variables is an NP-
hard combinatorial problem. Moreover, feature selection techniques
usually evaluate each variable independently, but it is known that
variables that separately do not provide useful information may do so
when they are used together. For this reason other alternatives, pri-
marily feature construction or extraction [18], emerged. In addition to
these two denominations, feature selection and feature extraction,
when dealing with dimensionality reduction it is also frequent to use
other terms. The most common are as follows:

Feature engineering [19]. This is probably the broadest term,
encompassing most of the others. Feature engineering can be carried
out by manual or automated means, and be based on the selection of
original characteristics or the construction of new ones through
transformations.

Feature learning [20]. It is the denomination used when the process to
select among the existing features or construct new ones is automated.
Thus, we can perform both feature selection and feature extraction
through algorithms such as the ones mentioned below. Despite the use
of automatic methods, sometimes an expert is needed to decide which
algorithm is the most appropriate depending on data traits, to evaluate
the optimum amount of variables to extract, etc.

Representation learning [20]. Although this term is sometimes
interchangeably used with the previous one, it is mostly used to refer
to the use of ANNs to fully automate the feature generation process.
Applying ANNs to learn distributed representations of concepts was
proposed by Hinton in [21]. Today, learning representations is mainly
linked to processing natural language, images and other signals with
specific kinds of ANNs, such as CNNs [11].

Feature selection [22]. Picking the most informative subset of variables
started as a manual process usually in charge of domain experts. It can be
considered a special case of feature weighting, as discussed in [23].
Although in certain fields the expert is still an important factor,
nowadays the selection of variables is usually carried out using
computer algorithms. These can operate in supervised or unsupervised
manner. The former approach usually relies on correlation or mutual
information between input and output variables [24,25], while the latter
tends to avoid redundancy among features [26]. Feature selection is
overall an essential strategy in the data preprocessing [22,27] phase.

Feature extraction [28]. The goal of this technique is to find a better
data representation for the machine learning algorithm intended to use,
since the original representation might not be the best one. It can be
faced both manually, in which case the feature construction term is of
common use, and automatically. Some elemental techniques such as

normalization, discretization or scaling of variables, as well as basic
transformations applied to certain data types,1 are also considered
within this field. New features can be extracted by finding linear
combinations of the original ones, as in PCA (Principal Component
Analysis) [29,30] or LDA (Linear Discriminant Analysis) [31], as well as
nonlinear combinations, like Kernel PCA [32] or Isomap [33]. The
latter ones are usually known as manifold learning [34] algorithms, and
fall in the scope of nonlinear dimensionality reduction techniques [35].
Feature extraction methods can also be categorized as supervised (e.g.
LDA) or non-supervised (e.g. PCA).

Feature fusion [36]. This more recent term has emerged with the
growth of multimedia data processing by machine learning
algorithms, especially images, text and sound. As stated in [36],
feature fusion methods aim to combine variables to remove
redundant and irrelevant information. Manifold learning algorithms,
and especially those based on ANNs, fall into this category.

Among the existing AE models there are several that are useful to
perform feature fusion. This is the aim of the most basic one, which can
be extended via several regularizations and adaptations to different
kinds of data. These options will be explored through the present work,
whose aim is to provide the reader with a didactic review on the inner
workings of these distinct AE models and the ways they can be used to
learn new representations of data.

The following are the main contributions of this paper:

• A proposal of a global taxonomy of AEs dedicated to feature fusion.

• Descriptions of these AE models including the necessary mathema-
tical formulation and explanations.

• A theoretical comparison between AEs and other popular feature
fusion techniques.

• A comprehensive review of other AE models as well as their appli-
cations.

• A set of guidelines on how to design an AE, and several examples on
how an AE may behave when its architecture and parameters are
altered.

• A summary of the available software for creating deep learning
models and specifically AEs.

Additionally, we provide a case study with the well known dataset
MNIST [37], which gives the reader some intuitions on the results
provided by an AE with different architectures and parameters. The
scrips to reproduce these experiments are provided in a repository, and
their use will be further described in Section 6.

The rest of this paper is structured as follows. The foundations and
essential aspects of AEs are introduced in Section 2, including the
proposal of a global taxonomy. Section 3 is devoted to thoroughly de-
scribing the AE models able to operate as feature fusion mechanisms
and several models which have further applications. The relationship
between these AE models and other feature fusion methods is portrayed
in Section 4, while applications of different kinds of AEs are described
in Section 5. Section 6 provides a set of guidelines on how to design an
AE for the task at hand, followed by the software pieces where it can be
implemented, as well as the case study with MNIST data. Concluding
remarks can be found in Section 7. Lastly, an Appendix briefly describes
the datasets used through the present work.

2. Autoencoder essentials

AEs are ANNs2 with a symmetric structure, where the middle layer

1 e.g. Take the original field containing a date and divide it into three new variables,
year, month and day.

2 Strictly speaking not all AEs are ANNs, but here our interest is in those since they are
the most common ones.

D. Charte et al. Information Fusion 44 (2018) 78–96

79

represents an encoding of the input data. AEs are trained to reconstruct
their input onto the output layer, while verifying certain restrictions
which prevent them from simply copying the data along the network.
Although the term autoencoder is the most popular nowadays, they were
also known as autoassociative neural networks [38], diabolo networks
[39] and replicator neural networks [40].

In this section the foundations of AEs are introduced, describing
their basic architecture as ANNs as well as the activation functions
regularly applied in their layers. Next, AEs are grouped into four types
according to their architecture. This is followed by our proposed tax-
onomy for AEs, which takes into account the properties these induce in
codifications. Lastly, a summary of their habitual applications is pro-
vided.

2.1. General structure

The basic structure of an AE, as shown in Fig. 1, includes an input x
which is mapped onto the encoding y via an encoder, represented as
function f. This encoding is in turn mapped to the reconstruction r by
means of a decoder, represented as function g.

This structure is captured in a feedforward neural network. Since
the objective is to reproduce the input data on the output layer, both x
and r have the same dimension. y, however, can be higher-dimensional
or lower-dimensional, depending on the properties desired. The AE can
also have as many layers as needed, usually placed symmetrically in the
encoder and decoder. Such a neural architecture can be observed in
Fig. 2.

In this case the encoder is made up of three layers, including the
middle encoding one, while the decoder starts in the middle one and
also spans three layers.

2.2. Activation functions of common use in autoencoders

A unit located in any of the hidden layers of an ANN receives several
inputs from the preceding layer. The unit computes the weighted sum of

these inputs and eventually applies a certain operation, the so-called
activation function, to produce the output. The nonlinearity behavior of
most ANNs is founded on the selection of the activation function to be
used. Fig. 3 shows the graphical appearance of six of the most popular
ones.

The activation functions shown in the first row are rarely used on
AEs when it comes to learning higher level features, since they rarely
provide useful representations. An undercomplete AE having one
hidden layer made up of k linear activation units (Eq. (1)) and that
minimizes the sum of squared errors is known to be equivalent to ob-
taining the k principal components of the feature space via PCA
[41–43]. AEs using binary/boolean activations (Eq. (2)) [44,45] are
mostly adopted for educational uses, as McCulloch and Pitts [1] cells
are still used in this context. However, they also have some specific
applications, such as data hashing as described in Section 5.4.

=s x x()linear (1)

= >s x x() [0]binary (2)

Note that square brackets denote Iverson’s convention [46] and eval-
uate to 0 or 1 according to the truthiness of the proposition.

Rectified linear units (ReLU, Fig. 3(c), Eq. (3)) are popular in many
deep learning models, but it is an activation function that tends to
degrade the AE performance. Since it always outputs 0 for negative

Fig. 1. General autoencoder structure.

Fig. 2. A possible neural architecture for an autoencoder with a 2-variable encoding
layer. W denotes weight matrices.

−10

−5

0

5

10

−10 −5 0 5 10

h

y

Linear

(a) Linear

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10

h

y

Binary

(b) Binary/Boolean

0.0

2.5

5.0

7.5

10.0

−10 −5 0 5 10

h

y

ReLU

(c) ReLU

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10

h

y

Sigmoid

(d) Logistic

−1.0

−0.5

0.0

0.5

1.0

−10 −5 0 5 10

h

y

Tanh

(e) Tanh

0.0

2.5

5.0

7.5

10.0

−10 −5 0 5 10

h

y

SELU

(f) SELU

Fig. 3. Common activation functions in ANNs.

D. Charte et al. Information Fusion 44 (2018) 78–96

80

inputs, it weakens the process of reconstructing the input features onto
the outputs. Although they have been successfully used in [47,48], the
authors had to resort to a few detours. A recent alternative which
combines the benefits of ReLU while circumventing these obstacles is
the SELU function (Scaled Exponential Linear Units, Fig. 3(f), Eq. (4))
[49]. There are already some proposals of deep AEs based on SELU such
as [50].

= >s x x x() [0]relu (3)

= ⎧
⎨⎩

− ≤
>

>s x λ αe α x
x x

λ() 0
0

, where 1
x

selu
(4)

Sigmoid functions are undoubtedly the most common activations in
AEs. The standard logistic function, popularly known simply as sigmoid
(Fig. 3(d), Eq. (5)), is probably the most frequently used. The hyper-
bolic tangent (Fig. 3(e), Eq. (6)) is also a sigmoid function, but it is
symmetric about the origin and presents a steeper slope. According to
LeCun [51] the latter should be preferred, since its derivative produces
stronger gradients that the former.

= =
+

s x σ x
e

() () 1
1 xsigm (5)

= = −
+

−

−s x x e e
e e

() tanh()
x x

x xtanh (6)

When designing AEs with multiple hidden layers, it is possible to use
different activation functions in some of them. This would result in AEs
combining the characteristics of several of these functions.

2.3. Autoencoder groups according to network structure

AEs could be grouped according to disparate principles, such as
their structure, the learning algorithm they use, the loss function that
guides the update of weights, their activation function or the field they
are applied. In this section we focus on the first criterion, while the
others will be further covered in following sections.

As explained above, AEs are ANNs with a symmetrical structure.
The decoder and the encoder have the same number of layers, with the
number of units per layer in reverse order. The encoding layer is shared
by both parts. Depending on the dimensionality of the encoding layer,
AEs are said to be:

• Undercomplete, if the encoding layer has a lower dimensionality than
the input. The smaller number of units imposes a restriction, so
during training the AE is forced to learn a more compact re-
presentation. This is achieved by fusing the original features ac-
cording to the weights assigned through the learning process.

• Overcomplete, otherwise. An encoding layer having the same or more
units than the input could allow the AE to simply learn the identity
function, copying the input onto the output. To avoid this behavior,
usually other restrictions are applied as will be explained later.

Although the more popular AE configuration for dimensionality
reduction is undercomplete, an overcomplete AE with the proper re-
strictions can also produce a compact encoding as explained in
Section 3.2.1.

In addition to the number of units per layer, the structure of an AE is
also dependent of the number of layers. According to this factor, an AE
can be:

• Shallow, when it only comprises three layers (input, encoding and
output). It is the simplest AE model, since there is only one hidden
layer (the encoding).

• Deep, when it has more than one hidden layer. This kind of AE can
be trained either layer by layer, as several shallow stacked AEs, or as
a deep ANN [52].

These four types of AEs are visually summarized in Fig. 4. Shallow
AEs are on the top row and deep ones in the bottom, while under-
complete AEs are on the left column and overcomplete on the right one.

2.4. Autoencoder taxonomy

As stated before, a taxonomy of AEs can be built according to dif-
ferent criteria. Here the interest is mainly on the properties of the in-
ferred model regarding the feature fusion task. Conforming to this
principle, we have elaborated the taxonomy shown in Fig. 5. As can be
seen, there are four main categories in this taxonomy:

Lower dimensionality. High-dimensional data can be an issue when
using most classifiers and especially shallow neural networks, since
they do not perform any kind of high-level feature learning and are then
forced to optimize a notable amount of parameters. This task may be
eased by just lowering the dimensionality of the data, and this is the
aim of the basic AE, which is thoroughly explained in Section 3.1.
Decreasing the dimensionality of specific types of data, such as images
or sequences, can be treated by domain specific AEs detailed in
Section 3.4.

Regularization. Sometimes, learned features are required to present
special mathematical properties. AEs can be easily modified in order
to reach encodings that verify them. The main regularizations that can
be applied to AEs are portrayed in Section 3.2.

Noise tolerance. In addition to different properties, a desirable trait for
the encoded space may be robustness in the face of noisy data. Two
distinct approaches to this problem using AEs are gathered in
Section 3.3.

Generative model. The transformation from the original feature space
onto the encoded space may not be the main objective of an AE.
Occasionally it will be useful to map new samples in the encoded space
onto the original features. In this case, a generative model is needed.
Those based in AEs are specified in Section 3.5.

2.5. Usual applications

The term autoencoder is very broad, referring to multiple learning
models based on both fully-connected feed-forward ANNs and other
types of ANNs, and even models completely unrelated to that structure.
Similarly, the application fields of AEs are also varied. In this work we
pay attention specifically to AEs whose basic model is that of an ANN.
In addition, we are especially interested in those whose objective is the
fusion of characteristics by means of nonlinear techniques.

Reducing the dimensionality of a feature space using AEs can be
achieved following disparate approaches. Most of them are reviewed in
Section 3, starting with the basic AE model, then advancing to those
that include a regularization, that present noise tolerance, etc. The goal
is to provide a broad view of the techniques that AEs rely on to perform
feature fusion.

Besides feature extraction, which is our main focus, there are AE
models designed for other applications such as outlier detection,
hashing, data compression or data generation. In Sections 3.5 and 3.6
some of these AEs will be briefly portrayed, and in Section 5 many of
their applications will be shortly reviewed.

3. Autoencoders for feature fusion

As has been already established, AEs are tools originally designed
for finding useful representations of data by learning nonlinear ways to
combine their features. Usually, this leads to a lower-dimensional
space, but different modifications can be applied in order to discover

D. Charte et al. Information Fusion 44 (2018) 78–96

81

features which satisfy certain requirements. All of these possibilities are
discussed in this section, which begins by establishing the foundations
of the most basic AE, and later encompasses several diverse variants,
following the proposed taxonomy: those that provide regularizations
are followed by AEs presenting noise tolerance, generative models are
explained afterwards, then some domain specific AEs and finally two
variations which do not fit into any previous category.

3.1. Basic autoencoder

The main objective of most AEs is to perform a feature fusion pro-
cess where learned features present some desired traits, such as lower
dimensionality, higher sparsity or desirable analytical properties. The
resulting model is able to map new instances onto the latent feature
space. All AEs thus share a common origin, which may be called the

basic AE [53].
The following subsections define the structure of a basic AE, es-

tablish their objective function, describe the training process while
enumerating the necessary algorithms for this task, and depict how a
deep AE can be initialized by stacking several shallow ones.

3.1.1. Structure
The structure of a basic AE, as shown in the previous section, is that

of a feed forward ANN where layers are of symmetrical amount of units.
Layers need not be symmetrical in the sense of activation functions or
weight matrices.

The simplest AE consists of just one hidden layer, and is defined by
two weight matrices and two bias vectors:

= = +y f x s W x b() (),1
(1) (1) (7)

Autoencoder taxonomy

Lower dimensionality

Basic

Convolutional

LSTM-based

Regularization

Sparse

Contractive

Noise tolerance

Denoising

Robust

Generative model

Variational

Adversarial

Fig. 5. Taxonomy: most popular autoencoders clas-
sified according to the charasteristics they induce in
their encodings

(a) Shallow undercomplete (b) Shallow overcomplete

(c) Deep undercomplete (d) Deep overcomplete

Fig. 4. Autoencoder models according to their structure.

D. Charte et al. Information Fusion 44 (2018) 78–96

82

= = +r g y s W y b() (),2
(2) (2) (8)

where s1 and s2 denote the activation functions, which usually are
nonlinear.

Deep AEs are the natural extension of this definition to a higher
number of layers. We will call the composition of functions in the en-
coder f, and the composition of functions in the decoder g.

3.1.2. Objective function
AEs generally base their objective function on a per-instance loss

function � � �× →: d dL :

∑= ∘
∈

W b S x g f x(, ;) (, ()())
x S

J L
(9)

where f and g are the encoding and decoding functions determined by
the weightsW and biases b, assuming activation functions are fixed, and
S is a set of samples. The objective of an AE is thus to optimize W and b
in order to minimize J .

For example, a typical loss function is the mean squared error
(MSE):

= −u v u v(,) .MSE 2
2L (10)

Notice that multiplying by constants or performing the square root of
the error induced by each instance does not alter the process, since
these operations preserve numerical order. As a consequence, the root
mean squared error (RMSE) is an equivalent loss metric.

When a probabilistic model is assumed for the input samples, the
loss function is chosen as the negative log-likelihood for the example x
given the output (g○f)(x) [54]. For instance, when input values are
binary or modeled as bits, cross-entropy is usually the preferred alter-
native for the loss function:

∑= − + − −
=

u v u v u v(,) log (1)log(1).
k

d

k k k kCE
1

L
(11)

3.1.3. Training
Usual algorithms for optimizing weights and biases in AEs are sto-

chastic gradient descent (SGD) [55] and some of its variants, such as
AdaGrad [56], RMSProp [57] and Adam [58]. Other applicable algo-
rithms which are not based on SGD are L-BFGS and conjugate gradient
[59].

The foundation of these algorithms is the technique of gradient
descent [60]. Intuitively, at each step, the gradient of the objective
function with respect to the parameters shows the direction of steepest
slope, and allows the algorithm to modify the parameters in order to

search for a minimum of the function.
In order to compute the necessary gradients, the backpropagation

algorithm [4] is applied. Backpropagation performs this computation
by calculating several intermediate terms from the last layer to the first.

AEs, like many other machine learning techniques, are susceptible
to overfitting of the training data. To avoid this issue, a regularization
term can be added to the objective function which causes a weight decay
[61]. This improves the generalization ability and encourages smaller
weights that produce good reconstructions. Weight decay can be in-
troduced in several ways, but essentially consists in a term depending
on weight sizes that will attempt to limit their growth. For example, the
resulting objetive function could be

∑ ∑= ∘ +
∈

W b S x g f x λ w(, ;) (, ()())
x S i

i
2J L

(12)

where wi traverses all the weights in W and λ is a parameter de-
termining the magnitude of the decay.

Further restrictions and regularizations can be applied. A specific
constraint that can be imposed is to tie the weight matrices symme-
trically, that is, in a shallow AE, to set =W W() ,T(1) (2) and the natural
extension to deep AEs. This allows to optimize a lower amount of
parameters, so the AE can be trained faster, while maintaining the
desired architecture.

3.1.4. Stacking
When AEs are deep, the success of the training process relies heavily

on a good weight initialization, since there can be from tens to hun-
dreds of thousands of them. This weight initialization can be performed
by stacking successive shallow AEs [54], that is, training the AE layer by
layer in a greedy fashion.

The training process begins by training only the first hidden layer as
the encoding of a shallow AE, as shown by the network on the left of
Fig. 6. After this step, the second hidden layer is trained, using the first
hidden layer as input layer, as displayed on the right. Inputs are com-
puted via a forward pass of the original inputs through the first layer,
with the weights determined during the previous stage. Each successive
layer up to the encoding is trained the same way.

After this layer-wise training, initial weights for all layers preceding
and including the encoding layer will have been computed. The AE is
now “unrolled”, i.e. the rest of layers are added symetrically with
weight matrices resulting from transposing the ones from each corre-
sponding layer. For instance, for the AE trained in Fig. 6, the unrolled
AE would have the structure shown in Fig. 4(c).

Finally, a fine-tuning phase can be performed, optimizing the
weights by backpropagating gradients through the complete structure
with training data.

3.2. Regularization

Encodings produced by basic AEs do not generally present any
special properties. When learned features are required to verify some
desirable traits, some regularizations may be achieved by adding a
penalization for certain behaviors Ω to the objetive function:

∑= ∘ +
∈

W b S x g f x λ W b S(, ;) (, ()()) Ω(, ;).
x S

J L
(13)

3.2.1. Sparse autoencoder
Sparsity in a representation means most values for a given sample

are zero or close to zero. Sparse representations are resembling of the
behavior of simple cells in the mammalian primary visual cortex, which
is believed to have evolved to discover efficient coding strategies [62].
This motivates the use of transformations of samples into sparse codes
in machine learning. A model of sparse coding based on this behavior
was first proposed in [63].

Sparse codes can also be overcomplete and meaningful. This was not

Fig. 6. Greedy layer-wise training of a deep AE with the architecture shown in Fig. 4(c).
Units drawn in black designate layers of the final AE, and gray ones indicate layers that
are not part of the unrolled AE during the fine-tuning phase.

D. Charte et al. Information Fusion 44 (2018) 78–96

83

necessarily the case in basic AEs, where an overcomplete code would be
trained to just copy inputs onto outputs.

When sparsity is desired in the encoding generated by an AE, acti-
vations of the encoding layer need to have low values in average, which
means units in the hidden layer usually do not fire. The activation
function used in those units will determine this low value: in the case of
sigmoid and ReLU activations, low values will be close to 0; this value
will be -1 in the case of tanh , and − λα in the case of a SELU.

The common way to introduce sparsity in an AE is to add a penalty
to the loss function, as proposed in [64] for Deep Belief Networks. In
order to compare the desired activations for a given unit to the actual
ones, these can be modeled as a Bernoulli random variable, assuming a
unit can only either fire or not. For a specific input x, let

̂ ∑=
∈

ρ
S

f x1 ()i
x S

i
(14)

be the average activation value of an unit in the hidden layer, where
= ⋯f f f f(, ,)c1 2 and c is the number of units in the encoding. ̂ρi will be

the mean of the associated Bernoulli distribution.
Let ρ be the desired average activation. The Kullback–Leibler di-

vergence [65] between the random variable defined by unit i and the
one corresponding to the desired activations will measure how different
both distributions are [66]:

̂ ̂ ̂= + −
−
−

ρ ρ ρ
ρ
ρ

ρ
ρ
ρ

KL() log (1)log
1
1

.i
i i (15)

Fig. 7 shows the penalty caused by Kullback–Leibler divergence for a
hidden unit when the desired average activation is =ρ 0.2. Notice that
the penalty is very low when the average activation is near the desired
one, but grows rapidly as it moves away and tends to infinity at 0 and 1.

The resulting penalization term for the objective function is

̂∑=
=

W b S ρ ρΩ (, ;) KL(),
i

c

iSAE
1 (16)

where the average activation value ̂ρi depends on the parameters of the
encoder and the training set S.

There are other modifications that can lead an encoder-decoder
architecture to produce a sparse code. For example, applying a sparsi-
fying logistic activation function in the encoding layer of a similar
energy-based model, which forces a low activation average [67], or
using a Sparse Encoding Symmetric Machine [68] which optimizes a
loss function with a different sparsifying penalty.

3.2.2. Contractive autoencoder
High sensitivity to perturbations in input samples could lead an AE

to generate very different encodings. This is usually inconvenient,
which is the motivation behind the contractive AE. It achieves local
invariance to changes in many directions around the training samples,
and is able to more easily discover lower-dimensional manifold struc-
tures in the data.

Sensitivity for small changes in the input can be measured as the
Frobenius norm ‖ · ‖F of the Jacobian matrix of the encoder Jf:

∑ ∑ ⎜ ⎟= ⎛
⎝

∂
∂

⎞
⎠= =

J x
f
x

x() () .f F
j

d

i

c
i

j

2

1 1

2

(17)

The higher this value is, the more unstable the encodings will be to
perturbations on the inputs.

A regularization is built from this measure into the objective func-
tion of the contractive AE:

∑=
∈

W b S J xΩ (, ;) () .
x S

f FCAE
2

(18)

A particular case of this induced contraction is the usage of L2
weight decay with a linear encoder: in this situation, the only way to
produce a contraction is to maintain small weights. In the nonlinear
case, however, contraction can be encouraged by pushing hidden units
to the saturated region of the activation function.

The contractive AE can be sampled [69], that is, it can generate new
instances from the learned model, by using the Jacobian of the encoder
to add a small noise to another point and computing its codification.
Intuitively, this can be seen as moving small steps along the tangent
plane defined by the encoder in a point on the manifold modeled.

3.3. Noise tolerance

A standard AE can learn a latent feature space from a set of samples,
but it does not guarantee stability in the presence of noisy instances, nor
it is able to remove noise when reconstructing new samples. In this
section, two variants that tackle this problem are discussed: denoising
and robust AEs.

3.3.1. Denoising autoencoder
A denoising AE or DAE [70] learns to generate robust features from

inputs by reconstructing partially destroyed samples. The use of AEs for
denoising had been introduced earlier [71], but this technique le-
verages the denoising ability of the AE to build a latent feature space
which is more resistant to corrupted inputs, thus its applications are
broader than just denoising.

The structure and parameters of a denoising AE are identical to
those of a basic AE. The difference here lies in a stochastic corruption of
the inputs which is applied during the training phase. The corrupting
technique proposed in [70], as illustrated by Fig. 8, is to randomly
choose a fixed amount of features for each training sample and set them
to 0. The reconstructions of the AE are however compared to the ori-
ginal, uncorrupted inputs. The AE will be thus be trained to guess the
missing values.

Formally, let q x x()͠ be a stochastic mapping performing the partial
destruction of values described above, the denoising AE recieves

∼x q x x()͠ ͠ as input and minimizes

�∑= ∘
∈

∼W b S x g f x(, ;) [(, ()())].͠
x S

x q x xDAE ()͠ ͠J L
(19)

A denoising AE does not need further restrictions or regularizations
in order to learn a meaningful coding from the data, which means it can
be overcomplete if desired. When it has more than one hidden layer, it
can be trained layer-wise. For this to be done, uncorrupted inputs are
computed as outputs of the previous layers, these are then corrupted
and provided to the network. Note that after the denoising AE isFig. 7. Values of Kullback–Leibler divergence for a unit with average activation ̂ρi.

D. Charte et al. Information Fusion 44 (2018) 78–96

84

trained, it is used to compute higher-level representations without
corrupting the input data.

The training technique allows for other possible corruption pro-
cesses, apart from forcing some values to 0 [72]. For instance, additive
Gaussian noise

∼x x σ(, I),͠ 2N (20)

which randomly offsets each component of x with the same variance, or
salt-and-pepper noise, which sets a fraction of the elements of the input
to their minimum or maximum value, according to a uniform dis-
tribution.

3.3.2. Robust autoencoder
Training an AE to recover from corrupted data is not the only way to

induce noise tolerance in the generated model. An alternative is to
modify the loss function used to minimize the reconstruction error in
order to dampen the sensitivity to different types of noise.

Robust stacked AEs [73] apply this idea, and manage to be less
affected by non-Gaussian noise than standard AEs. They achieve this by
using a different loss function based on correntropy, a localized simi-
larity measure defined in [74].

∑= − −
=

u v u v(,) (),
k

d

σ k kMCC
1

L K
(21)

⎜ ⎟= ⎛
⎝

− ⎞
⎠

α
π σ

α
σ

where () 1
2

exp
2

,σ
2

2K
(22)

and σ is a parameter for the kernel K .
Correntropy specifically measures the probability density that two

events are equal. An advantage of this metric is it being less affected by
outliers than MSE. Robust AEs attempt to maximize this measure
(equivalently, minimize negative correntropy), which translates in a
higher resilience to non-Gaussian noise.

3.4. Domain specific autoencoders

The following two AEs are based on the standard type, but are de-
signed to model very specific kinds of data, such as images and se-
quences.

Convolutional autoencoder [75]. Standard AEs do not explicitly consider
the 2-dimensional structure when processing image data. Convolutional
AEs solve this by making use of convolutional layers instead of fully
connected ones. In these, a global weight matrix is used and the

convolution operation is applied in order to forward pass values from
one layer to the next. The same matrix is flipped over both dimensions
and used for the reconstruction phase. Convolutional AEs can also be
stacked and used to initialize CNNs [76], which are able to perform
classification of images.

LSTM autoencoder [77]. A basic AE is not designed to model sequential
data, an LSTM AE achieves this by placing Long-Short-Term Memory
(LSTM) [78] units as encoder and decoder of the network. The encoder
LSTM reads and compresses a sequence into a fixed-size representation,
from which the decoder attempts to extract the original sequence in
inverse order. This is especially useful when data is sequential and
large, for example video data. A further possible task is to predict the
future of the sequence from the representation, which can be achieved
by attaching an additional decoder trained for this purpose.

3.5. Generative models

In addition to the models already described, which essentially
provide different mechanisms to reduce the dimensionality of a set of
variables, the following ones also produce a generative model from the
training data. Generative models learn a distribution in order to be able
to draw new samples, different from those observed. AEs can generally
reconstruct encoded data, but are not necessarily able to build mean-
ingful outputs from arbitrary encodings. Variational and adversarial
AEs learn a model of the data from which new instances can be gen-
erated.

Variational autoencoder [79]. This kind of AE applies a variational
Bayesian [80] approach to encoding. It assumes that a latent,
unobserved random variable y exists, which by some random process
leads to the observations, x. Its objective is thus to approximate the
distribution of the latent variable given the observations. Variational
AEs replace deterministic functions in the encoder and decoder by
stochastic mappings, and compute the objective function in virtue of
the density functions of the random variables:

�= −θ ϕ q p px y x y x y(, ;) KL(() ()) [log ()],ϕ θ q θy xVAE ()ϕL (23)

where q is the distribution approximating the true latent distribution of
y, and θ, ϕ are the parameters of each distribution. Since variational
AEs allow sampling from the learned distribution, applications usually
involve generating new instances [81,82].

Adversarial autoencoder [83]. It brings the concept of Generative
Adversarial Networks [84] to the field of AEs. It models the encoding
by imposing a prior distribution, then training a standard AE and,
concurrently, a discriminative network trying to distinguish
codifications from samples from the imposed prior. Since the
generator (the encoder) is trained to fool the discriminator as well,
encodings will tend to follow the imposed distribution. Therefore,
adversarial AEs are also able generate new meaningful samples.

Other generative models based on similar principles are Variational
Recurrent AEs [85], PixelGAN AEs [86] and Adversarial Symmetric
Variational AEs [87].

3.6. Other autoencoders farther from feature fusion

As can be seen, AEs can be easily altered to achieve different
properties in their encoding. The following are some AEs which do not
fall into any previous category.

3.6.1. Relational autoencoder Basic AEs do not explicitly consider the
possible relations among instances. The relational AE [88] modifies the
objective function to take into account the fidelity of the reconstruction
of relationships among samples. Instead of just adding a penalty term,

Fig. 8. Illustration of the training phase of a denoising AE. For each input sample, some of
its components are randomly selected and set to 0, but the reconstruction error is com-
puted by comparing to the original, non-corrupted data.

D. Charte et al. Information Fusion 44 (2018) 78–96

85

the authors propose a weighted sum of the sample reconstruction error
and the relation reconstruction error. Notice that this is not the only
variation named “relational autoencoder” by its authors, different but
identically named models are commented in sections 3.7 and 5.

3.6.2. Discriminative autoencoder Introduced in [89], the dis-
criminative AE uses the class information of instances in order to build
a manifold where positive samples are gathered and negative samples
are pushed away. As a consequence, this AE performs better re-
construction of positive instances than negative ones. It achieves this by
optimizing a different loss function, specifically the hinge loss function
used in metric learning. The main objective of this model is object
detection.

3.7. Autoencoder-based architectures for feature learning

The basic AE can also be used as building block or inspiration for
other, more complex architectures dedicated to feature fusion. This
section enumerates and briefly introduces the most relevant ones.

Autoencoder trees [90] (Fig. 9(a)) are encoder-decoder archi-
tectures, inspired by neural AEs, where the encoder as well as the de-
coder are actually decision trees. These trees use soft decision nodes,
which means they propagate instances to all their children with dif-
ferent probabilities.

A dual-autoencoder architecture [91] (Fig. 9(b)) attempts to learn
two latent representations for problems where variables can be treated
as instances and viceversa, e.g. predicting customers’ recommendations
of items. These two representations are linked by an additional term in
the objective function which minimizes their deviation from the
training data.

The relational or “cross-correlation” AE defined in [92] incorporates
layers where units are combined by multiplication instead of by a
weighted sum. This allows it to represent co-ocurrences among com-
ponents of its inputs.

A recursive AE [93] (Fig. 9(c)) is a tree-like architecture built from
AEs, in which new pieces of input are introduced as the model gets
deeper. A standard recursive AE attempts to reconstruct only the direct
inputs of each encoding layer, whereas an unfolding recursive AE [94]
reconstructs all previous inputs from each encoding layer. This archi-
tecture is designed to model sentiment in sentences.

4. Comparison to other feature fusion techniques

AEs are only several of a very diverse range of feature fusion
methods [36]. These can be grouped according to whether they perform
supervised or unsupervised learning. In the first case, they are usually
known as distance metric learning techniques [95]. Some adversarial
AEs, as well as AEs preserving class neighborhood structure [96], can
be sorted into this category, since they are able to make use of the class
information. However, this section focuses on the latter case, since most
AEs are unsupervised and therefore share more similarities with this
kind of methods.

A dimensionality reduction technique is said to be convex if it op-
timizes a function which does not have any local optima, and it is
nonconvex otherwise [97]. Therefore, a different classification of these
techniques is into convex and nonconvex approaches. AEs fall into the
nonconvex group, since they can attempt to optimize disparate objec-
tive functions, and these may present more than one optimum. AEs are
also not restrained to the dimensionality reduction domain, since they
can produce sparse codes and other meaningful overcomplete re-
presentations.

Lastly, feature fusion procedures can be carried out by means of
linear or nonlinear transformations. In this section, we aim to sum-
marize the main traits of the most relevant approaches in both of these
situations, and compare them to AEs.

4.1. Linear approaches

Principal component analysis is a statistical technique developed
geometrically by Pearson [29] and algebraically by Hotelling [30]. It
consists in the extraction of the principal components of a vector of
random variables. Principal components are linear combinations of the
original variables in a specific order, so that the first one has maximum
variance, the second one has maximum possible variance while being
uncorrelated to the first (equivalently, orthogonal), the third has
maximum possible variance while being uncorrelated to the first and
second, and so on. A modern analytical derivation of principal com-
ponents can be found in [98].

The use of PCA for dimensionality reduction is very common, and
can lead to reasonably good results. It is known that AEs with linear
activations that minimize the mean quadratic error learn the principal
components of the data [42]. From this perspective, AEs can be re-
garded as generalizations of PCA. However, as opposed to PCA, AEs can
learn nonlinear combinations of the variables and even overcomplete
representations of data.

Fig. 10 shows a particular occurrence of these facts in the case of the
MNIST dataset [37]. Row 1 shows several test samples and the rest
display reconstructions built by PCA and some AEs. As can be inferred
from rows 2 and 3, linear AEs which optimize MSE learn an approx-
imation of PCA. However, just by adjusting the activation functions and
the objective function of the neural network one can obtain superior
results (row 4). Improvements over the standard AE such as the robust
AE (row 5) also provide higher quality in their reconstructions.

A procedure similar to PCA but from a different theoretical per-
spective is Factor Analysis (FA) [99], which assumes a set of latent
variables or factors which are not observable but are linearly combined

Fig. 9. Illustrations of autoencoder-based architectures. Each rectangle represents a layer,
dark gray fill represents an input, light gray represents output layers and white objects
represent hidden layers.

D. Charte et al. Information Fusion 44 (2018) 78–96

86

to produce the observed variables. The difference between PCA and FA
is similar to that between the basic AE and the variational AE: the latter
assumes that hypothetical, underlying variables exist and cause the
observed data. Variational AEs and FA attempt to find the model that
best describes these variables, whereas the basic AE and PCA only aim
for a lower-dimensional representation.

Linear Discriminant Analysis (LDA) [100] is a supervised statistical
method to find linear combinations of features that achieve good se-
paration of classes. It makes some assumptions of normality and
homoscedasticity over the data, and projects samples onto new co-
ordinates that best discriminate classes. It can be easily seen that AEs
are very different in theory to this method: they usually perform un-
supervised learning, and they do not necessarily make previous as-
sumptions of the data. In contrast, AEs may not find the best separation
of classes but they might encode further meaningful information from
the data. Therefore, these techniques may be convenient, each in very
different types of problems.

4.2. Nonlinear approaches

Kernel PCA [32] is an extension of PCA which applies kernel
methods in order to extract nonlinear combinations of variables. Since
principal components can be computed by projecting samples onto the
eigenvectors of the covariance matrix, the kernel trick can be applied in
order to calculate the covariance matrix of the data in a higher-di-
mensional space, given by the kernel function. Therefore, kernel PCA
can compute nonlinear combinations of variables and overcomplete
representations. The choice of kernel, however, can determine the
success of the method and may behave differently with each problem,
and hence AEs are a more general and easily applicable framework for
nonlinear feature fusion.

Multidimensional Scaling (MDS) [101] is a well known technique
and a foundation for other algorithms. It consists in finding new co-
ordinates in a lower-dimensional space, while maintaining relative
distances among data points as accurately as possible. For this to be
achieved, it computes pairwise distances among points and then esti-
mates an origin or zero point for these, which allows to transform re-
lative distances into absolute distances that can be fitted into a real
Euclidean space. Sammon mapping [102] modifies the classical cost
function of MDS, in an attempt to similarly weigh retaining large dis-
tances as well as small ones. It achieves better preservation of local
structure than classic MDS, at the cost of giving more importance to
very small distances than large ones.

The approach of MDS to nonlinear feature fusion is opposite to that
of AEs, which generally do not directly take into account distances
among pairs of samples, and instead optimize a global measure of fit-
ness. However, the objective function of an AE can be combined with
that of MDS in order to produce a nonlinear embedding which considers
pairwise distances among points [103].

Isomap [33] is a manifold learning method which extends MDS in
order to find coordinates that describe the actual degrees of freedom of
the data while preserving distances among neighbors and geodesic
distances between the rest of points. In addition, Locally Linear

Embedding (LLE) [104] has a similar goal, to learn a manifold which
preserves neighbors, but a very different approach: it linearly re-
constructs each point from its neighbors in order to maintain the local
structure of the manifold.

Both of these techniques can be compared to the contractive AE, as
it also attempts to preserve the local behavior of the data in its en-
coding. Denoising AEs may also be indirectly forced to learn manifolds,
when they exist, and corrupted examples will be projected back onto
their surface [72]. However, AEs are able to map new instances onto
the latent space after they have been trained, a task Isomap and LLE are
not designed for.

Laplacian Eigenmaps [105] is a framework aiming to retain local
properties as well. It consists in constructing an adjacency graph where
instances are nodes and neighbors are connected by edges. Then, a
weight matrix similar to an adjacency matrix is built. Last, eigenvalues
and eigenvectors are obtained for the Laplacian matrix associated to the
weight matrix, and those eigenvectors (except 0) are used to compute
new coordinates for each point. As previously mentioned, AEs do not
usually consider the local structure of the data, except for contractive
AEs and further regularizations which incorporate measures of local
properties into the objective function, such as Laplacian AEs [106].

A Restricted Boltzmann Machine (RBM) [107], introduced origin-
ally as harmonium in [108], is an undirected graphical model, with one
visible layer and one hidden layer. They are defined by a joint prob-
ability distribution determined by an energy function. However, com-
puting probabilities is unfeasible since the distribution is intractable,
and they have been proved to be hard to simulate [109]. Instead,
Contrastive Divergence [110] is used to train an RBM. RBMs are an
alternative to AEs for greedy layer-wise initialization of weights in
ANNs including AEs. AEs, however, are trained with more classical
methods and are more easily adaptable to different tasks than RBMs.

5. Applications in feature learning and beyond

The ability of AEs to perform feature fusion is useful for easing the
learning of predictive models, improving classification and regression
results, and also for facilitating unsupervised tasks that are harder to
conduct in high-dimensional spaces, such as clustering. Some specific
cases of these applications are portrayed within the following subsec-
tions, including:

• Classification: reducing or transforming the training data in order to
achieve better performance in a classifier.

• Data compression: training AEs for specific types of data to learn
efficient compressions.

• Detection of abnormal patterns: identification of discordant in-
stances by analyzing generated encodings.

• Hashing: summarizing input data onto a binary vector for faster
search.

• Visualization: projecting data onto 2 or 3 dimensions with an AE for
graphical representation.

• Other purposes: further applications of AEs.

5.1. Classification

Using any of the AE models described in Section 3 to improve the
output of a classifier is something very common nowadays. Here only a
few but very representative case studies are referenced.

Classifying tissue images to detect cancer nuclei is a very compli-
cated accomplishment, due to the large size of high-resolution patho-
logical images and the high variance of the fundamental traits of these
nuclei, e.g. its shape, size, etc. The authors of [111] introduce a method,
based on stacked DAEs to produce higher level and more compact
features, which eases this task.

Multimodal/Multiview learning [112] is a rising technique which
also found considerable support in AEs. The authors of [113] present a

Fig. 10. Row 1 shows test samples, second row corresponds to PCA reconstructions, the
third one shows those from a linear AE optimizing MSE, row 4 displays reconstructions
from a basic AE with tanh activation and cross-entropy as loss function, and last row
corresponds to a robust AE.

D. Charte et al. Information Fusion 44 (2018) 78–96

87

general procedure named Orthogonal Autoencoder for Multi-View. It is
founded on DAEs to extract private and shared latent feature spaces,
with an added orthogonality constraint to remove unnecessary con-
nections. In [114] the authors propose the MSCAE (Multimodal Stacked
Contractive Autoencoder), an application-specific model fed with text,
audio and image data to perform multimodal video classification.

Multilabel classification [115] (MLC) is another growing machine
learning field. MLC algorithms have to predict several outputs (labels)
linked to each input pattern. These are usually defined by a high-di-
mensional feature vector and a set of labels as output which tend to be
quite large as well. In [116] the authors propose an AE-based method
named C2AE (Canonical Correlated AutoEncoder), aimed to learn a
compressed feature space while establishing relationships between the
input and output spaces.

Text classification following a semi-supervised approach by means
of AEs is introduced in [117]. A model called SSVAE (Semi-supervised
Sequential Variational Autoencoder) is presented, mixing a Seq2Seq
[118] structure and a sequential classifier. The authors state that their
method outperforms fully supervised methods.

Classifiers based on AEs can be grouped in ensembles in order to
gain expressive power, but some diversity needs to be introduced.
Several means of doing so, as well as a proposal for Stacked Denoising
Autoencoding (SDAE) classifiers can be found in [119]. This method
has set a new performance record in MNIST classification.

5.2. Data compression

Since AEs are able to reconstruct the inputs given to them, an ob-
vious application would be compressing large amounts of data.
However, as we already know, the AE output is not perfect, but an
approximate reconstruction of the input. Therefore, it is useful only
when lossy compression is permissible.

This is the usual scenario while working with images, hence the
popularity of the JPEG [120] graphic file format. It is therefore not
surprising that AEs have been successfully applied to this task. This is
the case of [121], where the performance of several AE models com-
pressing mammogram image patches is analyzed. A less specific goal
can be found in [122]. It proposes a model of AE named SWTA AE
(Stochastic Winner-Take-All Auto-Encoder), a variation of the sparse AE
model, aimed to work as a general method able to achieve a variable
ratio of image compression.

Although images could be the most popular data compressed by
means of AEs, these have also demonstrated their capacity to work with
other types of information as well. For instance:

• In [123] the authors suggest the use of AEs to compress biometric
data, such as blood pressure or heart rate, retrieved by wearable
devices. This way battery life can be extended while time trans-
mission of data is reduced.

• Language compression is the goal of ASC (Autoencoding Sentence
Compression), a model introduced in [124]. It is founded on a var-
iational AE, used to draw sentences from a language modeled with a
certain distribution.

• High-resolution time series of data, such as measurements taken
from service grids (electricity, water, gas, etc.), tend to need a lot of
space. In [125] the APRA (Adaptive Pairwise Recurrent Encoder)
model is presented, combining an AE and a LSTM to successfully
compress this kind of information.

Lossy compression is assumed to be tolerable in all these scenarios,
so the approximate reconstruction process of the AE does not hinder the
main objective in each case.

5.3. Detection of abnormal patterns

Abnormal patterns are samples present in the dataset that clearly

differ from the remaining ones. The distinction between anomalies and
outliers is usually found in the literature, although according to
Aggarwal [126] these terms, along with deviants, discordants or ab-
normalities, refer to the same concept.

The telemetry obtained from spacecrafts is quite complex, made up
of hundreds of variables. The authors of [127] propose the use of basic
and denoising AEs for facing anomaly detection taking advantage of the
nonlinear dimensionality reduction ability of these models. The com-
parison with both PCA and Kernel PCA demonstrates the superiority of
AEs in this task.

The technique introduced in [128] aims to improve the detection of
outliers. To do so, the authors propose to create ensembles of AEs with
random connections instead of fully connected layers. Their model,
named RandNet (Randomized Neural Network for Outlier Detection), is
compared against four classic outlier detection methods achieving an
outstanding performance.

A practical application of abnormal pattern detection with AEs is
the one proposed in [129]. The authors of this work used a DAE, trained
with a benchmark dataset, to identify fake twitter accounts. This way
legitimate followers can be separated of those that are not.

5.4. Hashing

Hashing [130] is a very common technique in computing, mainly to
create data structures able to offer constant access time to any element
(hash tables) and to provide certain guarantees in cryptography (hash
values). A special family of hash functions are those known as Locality
Sensitive Hashing (LSH) [131]. They have the ability to map data pat-
terns to lower dimensional spaces while maintaining some topological
traits, such as the relative distance between these patterns. This tech-
nique is very useful for some applications, such as similar document
retrieval. AEs can be also applied in these same fields.

Salakhutdinov and Hinton demonstrated in [132] how to perform
what they call semantic hashing through a multi-layer AE. The funda-
mental idea is to restrict the values of the encoding layer units so that
they are binary. In the example proposed in this study that layer has
128 or 20 units, sequences of ones and zeroes that are interpreted as an
address. The aim is to facilitate the retrieval of documents, as noted
above. The authors show how this technique offers better performance
than the classic TF-IDF [133] or LSH.

Although the approach to generate the binary AE is different from
the previous one, since they achieve hashing with binary AEs helped by
MAC (Method of Auxiliary Coordinates) [134], the proposal in [135] is
quite similar. The encoding layer produces a string of zeroes and ones,
used in this case to conduct fast search of similar images in databases.

5.5. Data visualization

Understanding the nature of a given dataset can be a complex task
when it posesses many dimensions. Data visualization techniques [136]
can help analyze the structure of the data. One way of visualizing all
instances in a dataset is to project it onto a lower-dimensional space
which can be represented graphically.

A particular useful case of AEs are those with a 2 or 3-variable
encoding [137]. This allows the generated codifications of samples to
be displayed in a graphical representation such as the one in Fig. 11.

The original data [138] has 30 variables describing each pattern.
Each data point is linked to one of two potential cancer diagnosis
(classes), Benign and Malignant. These have been used in Fig. 11 to
better show the separation between the two classes, but the V1 and V2
variables have been produced by the AE in an unsupervised fashion.
Different projections could be obtained by adjusting the AE parameters.

5.6. Other applications of autoencoders

Beyond the specific applications within the four previous categories,

D. Charte et al. Information Fusion 44 (2018) 78–96

88

which can be considered as usual in terms of the use of AEs, these find
to be useful in many other cases. The following are just a few specific
examples.

Holographic images [139] are a useful resource to store information
in a fast way. However, retrieval of data has to face a common obstacle
as is image degradation by the presence of speckle noise. In [140] an AE
is trained with original holographic images as well as with degraded
images, aiming to have a decoder able to reconstruct deteriorated ex-
amples. The denoising of images is also the goal of the method in-
troduced in [141], although in this case they are medical images and
the AE method is founded on convolutional denosing AEs.

The use of AEs to improve automatic speech recognition (ASR)
systems has been also studied in late years. The authors of [142] rely on
a DAE to reduce the noise and thus perform speech recognition en-
hancement. Essentially, the method gives the deep DAE noisy speech
samples as inputs while the reference outputs are clean. A similar
procedure is followed in [143], although in this case the problem pre-
sent in the speech samples is reverberation. ASR is specially challenging
when faced with whispered speech, as described in [144]. Once more, a
deep DAE is the tool to improve results from classical approaches.

The procedure to curate biological databases is very expensive, so
usually machine learning methods such as SVD (Singular Value
Decomposition) [145] are applied to help in the process. In [41] this
classical approach is compared with the use of deep AEs, reaching as
conclusion that the latter is able to improve the results.

The authors of [146] aim to perform multimodal fusion by means of
deep AEs, specifically proposing a Multimodal Deep Autoencoder
(MDA). The goal is to perform human pose recovery from video [147].
To do so, two separate AEs are used to obtain high-level representations
of 2D images and 3D human poses. Connecting these two AEs, a two-
layer ANN carries out the mapping between the two representations.

Tagging digital resources, such as movies and products [148] or
even questions in forums [149], helps the users in finding the in-
formation they are interested in, hence the importance in designing tag
recommendation systems. The foundation of the approach in [150] is
an AE variation named RSDAE (Relational Stacked Denoising Auto-
encoder). This AE works as a graphical model, combining the learning of
high-level features with relationships among items.

AEs are also scalable to diverse applications with big data, where
the stacking of networks acquires notable importance [151]. Multi-
modal AEs and Tensor AEs are some examples of variants developed in
this field.

6. Guidelines, software and examples on autoencoder design

This section attempts to guide the user along the process of

designing an AE for a given problem, reviewing the range of choices the
user has and their utility, then summarizing the available software for
deep learning and outlining the steps needed to implement an AE. It
also provides a case study with the MNIST dataset where the impact of
several parameters of AEs is explored, as well as different AE types with
identical parameter settings.

6.1. Guidelines

When building an AE for a specific task, it is convenient to take into
consideration the modifications studied in Section 3. There is no need to
choose just one of those, most of them can actually be combined in the
same AE. For instance, one could have a stacked denoising AE with
weight decay and sparsity regularizations. A schematic summary of
these can be viewed in Fig. 12.

Architecture. Firstly, one must define the structure of the AE, espe-
cially the length of the encoding layer. This is a fundamental step that
will determine whether the training process can lead it to a good co-
dification. If the length of the encoding is proportionally very low with
respect to the number of original variables, training a deep stacked AE
should be considered. In addition, convolutional layers are generally
better performant with image data, whereas LSTM encoders and de-
coders would be preferable when modeling sequences. Otherwise, fully
connected layers should be chosen.

Activations and loss function. Activation functions that will be applied
within each layer have to be decided according to the loss function
which will be optimized. For example, a sigmoid-like function such as
the logistic or tanh is generally a reasonable choice for the encoding
layer, the latter being usually preferred due to its greater gradients. This
does not need to coincide with the activation in the output layer.
Placing a linear activation or ReLU at the output can be sensible when
using mean squared error as reconstruction error, while a logistic ac-
tivation would be better combined with the cross-entropy error and
normalized data, since it outputs values between 0 and 1.

Regularizations. On top of that, diverse regularizations may be ap-
plied that will lead the AE to improve its encoding following certain
criteria. It is generally advisable to add a small weight decay in order to
prevent it from overfitting the training data. A sparse codification is
useful in many cases and adds more flexibility to the choice of structure.
Additionally, a contraction regularization may be valuable if the data
forms a lower-dimensional manifold.

As seen in previous sections, AEs provide high flexibility and can be
further modified for very different applications. In the case that the

Fig. 11. Example visualization of the codifications of a Cancer dataset generated with a
basic AE with weight decay.

Fig. 12. Summary of choices when designing an AE.

D. Charte et al. Information Fusion 44 (2018) 78–96

89

standard components do not fit the desired behavior, one must study
which of those can be replaced and how, in order to achieve it.

6.2. Software

There exists a large spectrum of cross-platform, open source im-
plementations of deep learning methods which allow for the construc-
tion and training of AEs. This section summarizes the most popular
frameworks, enumerates some specific implementations of AEs, and
provides an example of use where an AE is implemented on top of one
of these frameworks.

6.2.1. Available frameworks and packages
Tensorflow [152]. Developed by Google, Tensorflow has been the most
influential deep learning framework. It is based on the concept of data
flow graphs, where nodes represent mathematical operations and
multidimensional data arrays travel through the edges. Its core is
written in C++ and interfaces mainly with Python, although there are
APIs for Java, C and Go as well.

Caffe [153]. Originating at UC Berkeley, Caffe is built in C++ with
speed and modularity in mind. Models are defined in a descriptive
language instead of a common programming language, and trained in a
C++ program.

Torch [154]. It is a Lua library which promises speed and flexibility,
but the most notorious feature is its large ecosystem of community-
contributed tutorials and packages.

MXNet [155]. This project is currently held at the Apache Incubator for
incoming projects into the Apache Foundation. It is written in C++
and Python, and offers APIs in several additional languages, such as R,
Scala, Perl and Julia. MXNet provides flexibility in the definition of
models, which can be programmed symbolically as well as
imperatively.

Keras [156]. Keras is a higher-level library for deep learning in Python,
and can rely on Tensorflow, Theano, MXNet or Cognitive Toolkit for the
underlying operations. It simplifies the creation of deep learning
architectures by providing several shortcuts and predefined utilities,
as well as a common interface for several deep learning toolkits.

In addition to the previous ones, other well known deep learning
frameworks are Theano [157], Microsoft Cognitive Toolkit (CNTK3)
and Chainer.4

Setting various differences apart, all of these frameworks present
some common traits when building AEs. Essentially, the user has to
define the model layer by layer, placing activations where desired.
When establishing the objective function, they will surely include the
most usual ones, but uncommon loss functions such as correntropy or
some regularizations such as contraction may need to be implemented
additionally.

Very few pieces of software have specialized in the construction of
AEs. Among them, there is an implementation of the sparse AE avail-
able in packages Autoencoder [158] and SAENET [159] of the CRAN
repository for R, as well as an option for easily building basic AEs in
H2O.5 The yadlt6 library for Python implements denoising AEs and
several ways of stacking AEs.

6.2.2. Example of use
For the purposes of the case study in Section 6.3, some simple

implementations of different shallow AEs have been developed and
published on a public code repository under a free software license.7 In
order to use these scripts, the machine will need to have Keras and
Tensorflow installed. This can be achieved from a Python package
manager, such as pip or pipenv, or even general package managers
from some Linux distributions.

In the provided repository, the reader can find four scripts dedicated
to AEs and one to PCA. Among the first ones, autoencoder.py de-
fines the Keras model for a given AE type with the specified activation
for the encoding layer. For its part, utils.py implements regulariza-
tions and modifications in order to be able to define basic, sparse,
contractive, denoising and robust AEs.

Executable scripts are mnist.py and cancer.py. The first trains
any AE with the MNIST dataset and outputs a graphical representation
of the encoding and reconstruction of some test instances, whereas the
latter needs the Wisconsin Breast Cancer Diagnosis (WDBC) dataset in
order to train an AE for it. To use them, just call the Python interpreter
with the script as an argument, e.g. python mnist.py.

In order to modify the learned model in one of these scripts, the user
will need to adjust parameters in the construction of an Autoencoder
object. The following is an example which will define a sparse de-
noising AE:

Other numerical parameters for each AE type can be further cus-
tomized inside the build method. The training process of this AE can
be launched via a MNISTTrainer object:

Finally, running the modified script will train the AE and output
some graphical representations.

The Autoencoder class can be reused to train AEs with other da-
tasets. For this, one would need to implement funtionality analogous to
the MNISTTrainer class, which loads and prepares data, which is
provided to the AE model to be trained. A different example can be
found in the CancerTrainer class for the WDBC dataset.

6.3. Case study: handwritten digits

In order to offer some insight into the behavior of the main kinds of
AE that can be applied to the same problem, as well as some of the key
points in their configuration, we can study the resulting codifications
and reconstructions when training them with the well known dataset of
handwritten digits MNIST [37]. To do so, we have trained several AEs
with the 60,000 training instances, and have obtained reconstructions
for the first test instance of each class. Input values, originally ranging
from 0 to 255, have been scaled to the [0, 1] interval.

By default, the architecture of every AE has been as follows: a 784-
unit input layer, a 36-unit encoding layer with tanh activation and a
784-unit output layer with sigmoid activation. They have been trained
with the RMSProp algorithm for a total of 60 epochs and use binary
cross-entropy as their reconstruction error, except for the robust AE
which uses its own loss function, correntropy. They are all provided
identical weight initializations and hyperparameters.

Firstly, the performance impact of the encoding length and the
optimizer is studied. Next, changes in the behavior of a standard AE due
to different activation functions are analyzed. Lastly, the main AE
models for feature fusion are compared sharing a common configura-
tion. Scripts that were used to generate these results were implemented
in Python, with the Keras library over the Tensorflow backend.

6.3.1. Settings of encoding length
As discussed previously, the number of units in the encoding layer

can determine whether the AE is able to learn a useful representation.
This fact is captured in Fig. 13, where an encoding of 16 variables is too
small for the shallow AE to be successfully trained with the default
configuration, but a 36-variable codification achieves reasonably good3 https://docs.microsoft.com/cognitive-toolkit/.

4 https://chainer.org/.
5 http://docs.h2o.ai.
6 https://deep-learning-tensorflow.readthedocs.io/. 7 https://github.com/fdavidcl/ae-review-resources.

D. Charte et al. Information Fusion 44 (2018) 78–96

90

https://docs.microsoft.com/cognitive-toolkit/
https://chainer.org/
http://docs.h2o.ai
https://deep-learning-tensorflow.readthedocs.io/
https://github.com/fdavidcl/ae-review-resources

reconstructions. The accuracy of these can be improved at the cost of
enlarging the encodings, as can be seen with the 81 and 144-variable
encodings. Square numbers were chosen for the encoding lengths for
easier graphical representation, as will be seen in Section 6.3.4, but any
other length would have been as valid.

6.3.2. Comparison of optimizers
As introduced in Section 3.1.3, AEs can use several optimization

methods, usually based on SGD. Each variant attempts to improve SGD
in a different way, habitually by accumulating previous gradients in
some way or dynamically adapting parameters such as the learning
rate. Therefore, they will mainly differ in their ability to converge and
their speed in doing so.

The optimizers used in these examples were baseline SGD, AdaGrad,
Adam and RMSProp. Their progressive improvement of the objective
function through the training phase is compared in Fig. 14. It is easily
observed that SGD variants vastly improve the basic method, and Adam
obtains the best results among them, being closely followed by Ada-
Grad. The speed of convergence seems slightly higher in Adam as well.

In addition, Fig. 15 provides the reconstructions generated for some
test instances for a basic AE trained with each of those optimizers. As
could be intuitively deduced by the convergence, or lack thereof, of the
methods, SGD was not capable of finding weights which would recover
any digit. AdaGrad, for its part, did improve on SGD but its re-
constructions are relatively poor, whereas Adam and RMSProp display
superior performance, with little difference between them.

6.3.3. Comparison of activation functions
Activation functions play an important role in the way gradients are

propagated through the network. In this case, we apply four widely
used activations in the encoding layer of a basic AE and compare how
they affect its reconstruction ability. Some example results can be seen
in Fig. 16.

Sigmoid and hyperbolic tangent are functions with similar proper-
ties, but in spite of this they produce remarkably dissimilar results.
Reconstructions are poor when using sigmoidal activation, while tanh
achieves representations much closer to the original inputs.

With respect to ReLU and SELU, the observed results are

surprisingly solid and almost indistinguishable. They perform slightly
better than tanh in the sense that reconstructions are noticeably
sharper. Their good performance in this case may be due to the nature
of the data, which is restricted to the [0, 1] interval and does not ne-
cessarily show the behavior of these activations in general.

6.3.4. Comparison of the main AE models
It can be interesting to study the different traits the codifications

may acquire when variations on the basic AE are introduced. The re-
constructions produced by six different AE models are shown in Fig. 17.

The basic AE (Fig. 17(a)) and the one with weight decay (Fig. 17(b))
both generate recognizable reconstructions, although slighly blurry.
They however do not produce much variability among different digits
in the encoding layer, which means they are not making full use of its
36 dimensions. The weight decay corresponds to Eq. (12) with λ set to
0.01.

The sparse AE has been trained according to Eq. (15) with an ex-
pected activation value of − 0.7. Its reconstructions are not much dif-
ferent from those of the previous ones, but in this case the encoding
layer has much lower activations in average, as can be appreciated by
the darker representations in Fig. 17(c). Most of the information is
therefore tightly condensed in a few latent variables.

The contractive AE achieves other interesting properties in its en-
coding: it has attempted to model the data as a lower dimensional
manifold, where digits that seem more similar will be placed closer than

Fig. 13. First row: test samples; Remaining rows: reconstructions obtained with 16, 36,
81 and 144 units in the encoding layer, respectively.

Fig. 14. Evolution of the loss function when using several optimizers.

Fig. 15. Test samples and reconstructions obtained with different optimizers.

D. Charte et al. Information Fusion 44 (2018) 78–96

91

those which are very unalike. As a consequence, the 0 and the 1 shown
in Fig. 17(d) have very differing codifications, whereas the 3 and the 8
have relatively similar ones. Intuitively, one would need to travel larger
distances along the learned manifold to go from a 0 to a 1, than from a 3
to an 8.

The denoising AE is able to eliminate noise from test instances, at
the expense of losing some sharpness in the reconstruction, as can be
seen in Fig. 17(e). Finally, the robust AE (Fig. 17(f)) achieves noticeably
higher clarity in the reconstruction and more variance in the encoding
than the standard AEs.

7. Conclusions

As Pedro Domingos states in his famous tutorial [19], and as can be
seen from the large number of publications on the subject, feature en-
gineering is the key to obtain good machine learning models, able to
generalize and provide decent performance. This process consists in
choosing the most relevant subset of features or combining some of
them to create new ones. Automated fusion of features, specially when
performed by nonlinear techniques, has demonstrated to be very ef-
fective. Neural network-based autoencoders are among the approaches
to conduct this kind of task.

This paper started offering the reader with a general view of which
an AE is, as well as its essential foundations. After introducing the usual

AE network structures, a new AE taxonomy, based on the properties of
the inferred model, has been proposed. Those AE models mainly used in
feature fusion have been explained in detail, highlighting their most
salient characteristics and comparing them with more classical feature
fusion techniques. The use of disparate activation functions and
training methods for AEs has been also thoroughly illustrated.

In addition to AEs for feature fusion, many other AE models and
applications have been listed. The number of new proposals in this field
is always growing, so it is easy to find dozens of AE variants, most of
them based on the fundamental models described above.

This review is complemented by a final section proposing guidelines
for selecting the most appropriate AE model based on different criteria,
such as the type of units, loss function, activation function, etc., as well
as mentioning available software to put this knowledge into practice.
Empirical results on the well known MNIST dataset obtained from
several AE configurations, combining disparate activation functions,
optimizers and models, have been compared. The aim is to offer the
reader help when facing this type of decision.

Acknowledgments

This work is supported by the Spanish National Research Projects
TIN2015-68454-R and TIN2014-57251-P, and Project BigDaP-TOOLS -
Ayudas Fundación BBVA a Equipos de Investigación Científica 2016.

Fig. 16. Test samples and reconstructions obtained with different activation functions.

Fig. 17. Reconstructing test samples with different AE models. First row of each figure shows test samples, second row shows activations of the encoding layer and third row displays
reconstructions. Encoded values range from -1 (black) to 1 (white).

D. Charte et al. Information Fusion 44 (2018) 78–96

92

Appendix A. Description of used datasets

A1. Breast cancer diagnosis (wisconsin)

The well known dataset of diagnosis of breast cancer in Wisconsin (WDBC) [138] is briefly used in Section 5.5 to provide a 2-dimensional
visualization example.

This dataset consists of 569 instances corresponding to patients, each of which present 30 numeric input features and one of two classes that
identify the type of tumor: benign or malignant. The dataset is slightly imbalanced, exhibiting a 37.3% of instances associated to the malignant class,
while the remaining 62.7% correspond to benign tumors. The data have been normalized for the training process of the basic AE that generated the
example.

Originally, features were extracted from a digitized image of a fine-needle aspiration sample of a breast mass, and described ten different traits of
each cell nucleus. The mean, standard error and largest value of these features are computed, resulting in the 30 input attributes for each patient,
gathered in the published dataset.

WDBC is usually relied on as an example dataset and most classifiers generally obtain high accuracy: the authors of the original proposal already
achieved 97% of classification accuracy in cross-validation. However, it presents some issues when applying AEs: its small imbalance may cause
instances classified as benign to contribute more to the loss function, inducing some bias in the resulting network, which may reconstruct these more
accurately than the rest. Furthermore, it is composed of relatively few instances, which may not be sufficient for some deep learning techniques to be
able to generalize.

A2. MNIST

MNIST [37] is a widely used dataset within deep learning research. It is regularly chosen as a benchmark for new techniques and neural
architectures. It has been the base of our case study in Section 6.3.

The dataset consists of 60,000 instances, divided into a 50,000-instance set for training and the remaining 10,000 for test. each corresponding to
a 28× 28-sized image of a handwritten digit, from 0 to 9. The values of this 28× 28 matrix or 784-variable input represent the gray level of each
pixel, and therefore range from 0 to 255, but they have been rescaled to the [0, 1] interval in our examples.

This dataset is actually a modified subset of a previous work from NIST8 for character recognition. The original images used only black or white
pixels, whereas in MNIST they have been anti-aliased.

MNIST has been used as benchmark for a large variety of deep learning proposals, since it is reasonably easy to extract higher-level features out of
simple grayscale images, and it provides a high enough amount of training data. State-of-the-art work9 achieves an error rate of around 0.2%
[119,160].

References

[1] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (4) (1943) 115–133, http://dx.doi.org/10.1007/
BF02478259.

[2] D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory, John
Wiley And Sons, 1949, http://dx.doi.org/10.1002/sce.37303405110.

[3] F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton (Project
PARA), Cornell Aeronautical Laboratory, 1957.

[4] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-
propagating errors, Nature 323 (6088) (1986) 533–538, http://dx.doi.org/10.
1038/323533a0.

[5] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are uni-
versal approximators, Neural Networks 2 (5) (1989) 359–366, http://dx.doi.org/
10.1016/0893-6080(89)90020-8.

[6] S. Hochreiter, The vanishing gradient problem during learning recurrent neural
nets and problem solutions, Int. J. Uncertainty Fuzziness Knowl. Based Syst. 6 (02)
(1998) 107–116, http://dx.doi.org/10.1142/S0218488598000094.

[7] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard,
L.D. Jackel, Backpropagation applied to handwritten zip code recognition, Neural
Comput. 1 (4) (1989) 541–551, http://dx.doi.org/10.1162/neco.1989.1.4.541.

[8] G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets,
Neural Comput. 18 (7) (2006) 1527–1554, http://dx.doi.org/10.1162/neco.2006.
18.7.1527.

[9] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Networks
61 (2015) 85–117, http://dx.doi.org/10.1016/j.neunet.2014.09.003.

[10] G.E. Hinton, Deep belief networks, Scholarpedia 4 (5) (2009) 5947, http://dx.doi.
org/10.4249/scholarpedia.5947.

[11] Y. LeCun, Y. Bengio, The handbook of brain theory and neural networks, Ch.
Convolutional Networks for Images, Speech, and Time Series, MIT Press,
Cambridge, MA, USA, 1998, pp. 255–258.

[12] R.J. Williams, D. Zipser, A learning algorithm for continually running fully re-
current neural networks, Neural Comput. 1 (2) (1989) 270–280, http://dx.doi.
org/10.1162/neco.1989.1.2.270.

[13] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)

(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.
[14] M. Ranzato, Y.-L. Boureau, S. Chopra, Y. LeCun, A unified energy-based frame-

work for unsupervised learning, in: M. Meila, X. Shen (Eds.), Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics, Vol. 2 of
Proceedings of Machine Learning Research, PMLR, San Juan, Puerto Rico, 2007,
pp. 371–379.

[15] D.H. Ballard, Modular learning in neural networks, Proceedings of the Sixth
National Conference on Artificial Intelligence - Volume 1, AAAI’87, AAAI Press,
(1987), pp. 279–284.

[16] R. Bellman, Dynamic Programming, Princeton University Press, 1957.
[17] M. Dash, H. Liu, Feature selection for classification, Intell. Data Anal. 1 (1997)

131–156, http://dx.doi.org/10.3233/IDA-1997-1302.
[18] H. Liu, H. Motoda, Feature Extraction, Construction and Selection: A Data Mining

Perspective, 453 Springer Science & Business Media, 1998, http://dx.doi.org/10.
1007/978-1-4615-5725-8.

[19] P. Domingos, A few useful things to know about machine learning, Commun. ACM
55 (10) (2012) 78–87, http://dx.doi.org/10.1145/2347736.2347755.

[20] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new
perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828,
http://dx.doi.org/10.1109/TPAMI.2013.50.

[21] G.E. Hinton, Learning distributed representations of concepts, Proceedings of the
Eighth Annual Conference of the Cognitive Science Society, 1 Amherst, MA, 1986,
p. 12, http://dx.doi.org/10.1109/69.917563.

[22] S. García, J. Luengo, F. Herrera, Data Preprocessing in Data Mining, Springer,
2015, http://dx.doi.org/10.1007/978-3-319-10247-4.

[23] D. Wettschereck, D.W. Aha, T. Mohri, A Review and Empirical Evaluation of
Feature Weighting Methods for a Class of Lazy Learning Algorithms, Lazy
Learning, Springer, 1997, pp. 273–314, http://dx.doi.org/10.1023/
A:1006593614256.

[24] M.A. Hall, Correlation-based feature selection for machine learning, PhD. thesis,
University of Waikato Hamilton, 1999.

[25] H. Peng, F. Long, C.H.Q. Ding, Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans.
Pattern Anal. Mach. Intell. 27 (2005) 1226–1238, http://dx.doi.org/10.1109/
TPAMI.2005.159.

[26] P. Mitra, C.A. Murthy, S.K. Pal, Unsupervised feature selection using feature si-
milarity, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 301–312, http://dx.
doi.org/10.1109/34.990133.

[27] S. García, J. Luengo, F. Herrera, Tutorial on practical tips of the most influential
data preprocessing algorithms in data mining, Knowl. Based Syst. 98 (2016) 1–29,
http://dx.doi.org/10.1016/j.knosys.2015.12.006.

8 Available at http://doi.org/10.18434/T4H01C.
9 A collection of methods applied to MNIST and their results is available at http://yann.

lecun.com/exdb/mnist/.

D. Charte et al. Information Fusion 44 (2018) 78–96

93

http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1002/sce.37303405110
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0003
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0003
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.4249/scholarpedia.5947
http://dx.doi.org/10.4249/scholarpedia.5947
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0011
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0011
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0011
http://dx.doi.org/10.1162/neco.1989.1.2.270
http://dx.doi.org/10.1162/neco.1989.1.2.270
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0014
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0014
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0014
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0014
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0014
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0015
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0015
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0015
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0016
http://dx.doi.org/10.3233/IDA-1997-1302
http://dx.doi.org/10.1007/978-1-4615-5725-8
http://dx.doi.org/10.1007/978-1-4615-5725-8
http://dx.doi.org/10.1145/2347736.2347755
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/69.917563
http://dx.doi.org/10.1007/978-3-319-10247-4
http://dx.doi.org/10.1023/A:1006593614256
http://dx.doi.org/10.1023/A:1006593614256
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0024
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0024
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/34.990133
http://dx.doi.org/10.1109/34.990133
http://dx.doi.org/10.1016/j.knosys.2015.12.006
http://doi.org/10.18434/T4H01C
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[28] I. Guyon, A. Elisseeff, An Introduction to Feature Extraction, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 1–25, http://dx.doi.org/10.1007/978-3-
540-35488-8_1.

[29] K. Pearson, LIII. On lines and planes of closest fit to systems of points in space,
Philosoph. Mag. Series 62 (11) (1901) 559–572, http://dx.doi.org/10.1080/
14786440109462720.

[30] H. Hotelling, Analysis of a complex of statistical variables into principal compo-
nents, J. Edu. Psychol. 24 (6) (1933) 417, http://dx.doi.org/10.1037/h0071325.

[31] R.A. Fisher, The statistical utilization of multiple measurements, Ann. Hum. Genet.
8 (4) (1938) 376–386, http://dx.doi.org/10.1111/j.1469-1809.1938.tb02189.x.

[32] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel
eigenvalue problem, Neural Comput. 10 (5) (1998) 1299–1319, http://dx.doi.org/
10.1162/089976698300017467.

[33] J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for
nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323,
http://dx.doi.org/10.1126/science.290.5500.2319.

[34] L. Cayton, Algorithms for Manifold Learning, Technical report, University of
California at San Diego, 2005.

[35] J.A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Springer Science &
Business Media, 2007, http://dx.doi.org/10.1007/978-0-387-39351-3.

[36] U.G. Mangai, S. Samanta, S. Das, P.R. Chowdhury, A survey of decision fusion and
feature fusion strategies for pattern classification, IETE Tech. Rev. 27 (4) (2010)
293–307, http://dx.doi.org/10.4103/0256-4602.64604.

[37] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324, http://dx.doi.org/
10.1109/5.726791.

[38] M.A. Kramer, Nonlinear principal component analysis using autoassociative
neural networks, AlChE J. 37 (2) (1991) 233–243, http://dx.doi.org/10.1002/aic.
690370209.

[39] H. Schwenk, Y. Bengio, Training methods for adaptive boosting of neural net-
works, Advances in Neural Information Processing Systems, (1998), pp. 647–653,
http://dx.doi.org/10.1162/089976600300015178.

[40] R. Hecht-Nielsen, Replicator neural networks for universal optimal source coding,
Science (1995) 1860–1863, http://dx.doi.org/10.1126/science.269.5232.1860.

[41] D. Chicco, P. Sadowski, P. Baldi, Deep autoencoder neural networks for gene
ontology annotation predictions, Proceedings of the 5th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, ACM, (2014), pp.
533–540, http://dx.doi.org/10.1145/2649387.2649442.

[42] P. Baldi, K. Hornik, Neural networks and principal component analysis: learning
from examples without local minima, Neural Networks 2 (1) (1989) 53–58, http://
dx.doi.org/10.1016/0893-6080(89)90014-2.

[43] H. Kamyshanska, R. Memisevic, On autoencoder scoring, in: S. Dasgupta,
D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine
Learning, Vol. 28 of Proceedings of Machine Learning Research, PMLR, Atlanta,
Georgia, USA, 2013, pp. 720–728.

[44] L. Deng, M.L. Seltzer, D. Yu, A. Acero, A.-r. Mohamed, G. Hinton, Binary coding of
speech spectrograms using a deep auto-encoder, Eleventh Annual Conference of
the International Speech Communication Association, (2010).

[45] P. Baldi, Autoencoders, unsupervised learning, and deep architectures,
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, (2012),
pp. 37–49.

[46] D.E. Knuth, Two notes on notation, Am. Math. Monthly 99 (5) (1992) 403–422,
http://dx.doi.org/10.2307/2325085.

[47] X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment
classification: a deep learning approach, Proceedings of the 28th International
Conference on Machine Learning (ICML-11), (2011), pp. 513–520.

[48] Ç. Gülçehre, Y. Bengio, Knowledge matters: importance of prior information for
optimization, J. Mach. Learn. Res. 17 (8) (2016) 1–32.

[49] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural
networks, Advances in Neural Information Processing Systems (NIPS), (2017).

[50] O. Kuchaiev, B. Ginsburg, Training deep autoencoders for recommender systems,
International Conference on Learning Representations, (2018).

[51] Y. LeCun, L. Bottou, G.B. Orr, K.R. Müller, Efficient BackProp, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998, pp. 9–50, http://dx.doi.org/10.1007/3-540-
49430-8_2.

[52] H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for
training deep neural networks, J. Mach. Learn. Res. 10 (January) (2009) 1–40.

[53] H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular
value decomposition, Biol. Cybern. 59 (4) (1988) 291–294, http://dx.doi.org/10.
1007/BF00332918.

[54] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of
deep networks, Advances in Neural Information Processing Systems, (2007), pp.
153–160.

[55] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat.
(1951) 400–407, http://dx.doi.org/10.1007/978-1-4612-5110-1_9.

[56] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (July) (2011) 2121–2159.

[57] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop, COURSERA: Neural Networks Mach.
Learn. 4 (2) (2012) 26–31.

[58] D. Kingma, J. Ba, Adam: a method for stochastic optimization, International
Conference on Learning Representations, (2015).

[59] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q.V. Le, A.Y. Ng, On optimization
methods for deep learning, Proceedings of the 28th International Conference on
Machine Learning (ICML-11), (2011), pp. 265–272.

[60] A. Cauchy, Méthode générale pour la résolution des systemes d’équations
simultanées, Comptes Rendus des Séances de l’Académie des Sciences A (25)

(1847) 536–538.
[61] A. Krogh, J.A. Hertz, A simple weight decay can improve generalization, Advances

in Neural Information Processing Systems, (1992), pp. 950–957.
[62] B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis set: a

strategy employed by v1? Vision Res. 37 (23) (1997) 3311–3325, http://dx.doi.
org/10.1016/S0042-6989(97)00169-7.

[63] B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by
learning a sparse code for natural images, Nature 381 (6583) (1996) 607–609,
http://dx.doi.org/10.1038/381607a0.

[64] H. Lee, C. Ekanadham, A.Y. Ng, Sparse deep belief net model for visual area v2,
Advances in Neural Information Processing Systems, (2008), pp. 873–880.

[65] S. Kullback, R.A. Leibler, On information and sufficiency, The Annals of mathe-
matical statistics 22 (1) (1951) 79–86, http://dx.doi.org/10.1214/aoms/
1177729694.

[66] A. Ng, Sparse autoencoder, CS294A Lecture notes 72 (2011) (2011) 1–19.
[67] C. Poultney, S. Chopra, Y.L. Cun, et al., Efficient learning of sparse representations

with an energy-based model, Advances in Neural Information Processing systems,
(2007), pp. 1137–1144.

[68] Y.-l. Boureau, Y.L. Cun, et al., Sparse feature learning for deep belief networks,
Advances in Neural Information Processing Systems, (2008), pp. 1185–1192.

[69] S. Rifai, Y. Bengio, P. Vincent, Y.N. Dauphin, A generative process for sampling
contractive auto-encoders, Proceedings of the 29th International Coference on
International Conference on Machine Learning, ICML’12, Omnipress, (2012), pp.
1811–1818.

[70] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing
robust features with denoising autoencoders, Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, ACM, (2008), pp. 1096–1103.

[71] Y. LeCun, Modèles Connexionnistes de L’apprentissage, 1987, PhD. thesis, These
de Doctorat, Université Paris 6.

[72] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising
autoencoders: Learning useful representations in a deep network with a local
denoising criterion, J. Mach. Learn. Res. 11 (December) (2010) 3371–3408.

[73] Y. Qi, Y. Wang, X. Zheng, Z. Wu, Robust feature learning by stacked autoencoder
with maximum correntropy criterion, IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, (2014), pp. 6716–6720, http://dx.
doi.org/10.1109/ICASSP.2014.6854900.

[74] W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: a localized similarity measure,
IEEE International Joint Conference on Neural Networks, 2006 IJCNN, IEEE,
2006, pp. 4919–4924, http://dx.doi.org/10.1109/IJCNN.2006.247192.

[75] J. Masci, U. Meier, D. Cireşan, J. Schmidhuber, Stacked convolutional auto-en-
coders for hierarchical feature extraction, in: t. Honkela, W. Duch, M. Girolami,
S. Kaski (Eds.), Artificial Neural Networks and Machine Learning – ICANN, 21st
International Conference on Artificial Neural Networks, Espoo, Finland, June
14–17, 2011, Proceedings, Part I., Springer Berlin Heidelberg, 2011 2011, pp.
52–59, , http://dx.doi.org/10.1007/978-3-642-21735-7_7.

[76] Y. LeCun, B.E. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.E. Hubbard,
L.D. Jackel, Backpropagation applied to handwritten zip code recognition, Neural
Comput. 1 (1989) 541–551, http://dx.doi.org/10.1162/neco.1989.1.4.541.

[77] N. Srivastava, E. Mansimov, R. Salakhudinov, Unsupervised learning of video
representations using LSTMs, International Conference on Machine Learning,
(2015), pp. 843–852.

[78] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780, http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[79] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, arXiv:1312.6114.
[80] C.W. Fox, S.J. Roberts, A tutorial on variational Bayesian inference, Artif. Intell.

Rev. (2012) 1–11, http://dx.doi.org/10.1007/s10462-011-9236-8.
[81] A. Dosovitskiy, T. Brox, Generating images with perceptual similarity metrics

based on deep networks, Advances in Neural Information Processing Systems,
(2016), pp. 658–666.

[82] D.J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approx-
imate inference in deep generative models, Proceedings of the 31st International
Conference on Machine Learning (ICML-14), (2014), pp. 1278–1286.

[83] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial autoencoders,
arXiv:1511.05644.

[84] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, Advances in Neural
Information Processing Systems, (2014), pp. 2672–2680.

[85] O. Fabius, J.R. van Amersfoort, Variational recurrent auto-encoders, International
Conference on Learning Representations, (2015).

[86] A. Makhzani, B.J. Frey, PixelGAN autoencoders, in: I. Guyon, U.V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in
Neural Information Processing Systems 30, Curran Associates, Inc., 2017, pp.
1972–1982.

[87] Y. Pu, W. Wang, R. Henao, L. Chen, Z. Gan, C. Li, L. Carin, Adversarial symmetric
variational autoencoder, Advances in Neural Information Processing Systems,
(2017), pp. 4331–4340.

[88] Q. Meng, D. Catchpoole, D. Skillicom, P.J. Kennedy, Relational autoencoder for
feature extraction, International Joint Conference on Neural Networks (IJCNN),
IEEE, 2017, pp. 364–371, http://dx.doi.org/10.1109/IJCNN.2017.7965877.

[89] S. Razakarivony, F. Jurie, Discriminative autoencoders for small targets detection,
22nd IEEE International Conference on Pattern Recognition (ICPR), IEEE, 2014,
pp. 3528–3533, http://dx.doi.org/10.1109/ICPR.2014.607.

[90] O. rsoy, E. Alpaydn, Unsupervised feature extraction with autoencoder trees,
Neurocomputing 258 (2017) 63–73, http://dx.doi.org/10.1016/j.neucom.2017.
02.075.

[91] F. Zhuang, Z. Zhang, M. Qian, C. Shi, X. Xie, Q. He, Representation learning via

D. Charte et al. Information Fusion 44 (2018) 78–96

94

http://dx.doi.org/10.1007/978-3-540-35488-8_1
http://dx.doi.org/10.1007/978-3-540-35488-8_1
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1111/j.1469-1809.1938.tb02189.x
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1126/science.290.5500.2319
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0034
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0034
http://dx.doi.org/10.1007/978-0-387-39351-3
http://dx.doi.org/10.4103/0256-4602.64604
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1162/089976600300015178
http://dx.doi.org/10.1126/science.269.5232.1860
http://dx.doi.org/10.1145/2649387.2649442
http://dx.doi.org/10.1016/0893-6080(89)90014-2
http://dx.doi.org/10.1016/0893-6080(89)90014-2
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0043
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0043
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0043
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0043
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0044
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0044
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0044
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0045
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0045
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0045
http://dx.doi.org/10.2307/2325085
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0047
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0047
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0047
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0048
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0048
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0049
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0049
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0050
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0050
http://dx.doi.org/10.1007/3-540-49430-8_2
http://dx.doi.org/10.1007/3-540-49430-8_2
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0052
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0052
http://dx.doi.org/10.1007/BF00332918
http://dx.doi.org/10.1007/BF00332918
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0054
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0054
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0054
http://dx.doi.org/10.1007/978-1-4612-5110-1_9
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0056
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0056
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0057
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0057
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0058
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0058
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0059
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0059
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0059
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0060
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0060
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0060
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0061
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0061
http://dx.doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/10.1038/381607a0
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0064
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0064
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0066
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0067
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0067
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0067
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0068
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0068
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0069
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0069
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0069
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0069
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0070
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0070
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0070
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0071
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0071
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0071
http://dx.doi.org/10.1109/ICASSP.2014.6854900
http://dx.doi.org/10.1109/ICASSP.2014.6854900
http://dx.doi.org/10.1109/IJCNN.2006.247192
http://dx.doi.org/10.1007/978-3-642-21735-7_7
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0076
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0076
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0076
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1007/s10462-011-9236-8
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0079
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0079
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0079
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0080
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0080
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0080
http://arxiv.org/abs/1511.05644
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0081
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0081
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0081
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0082
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0082
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0083
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0083
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0083
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0083
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0084
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0084
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0084
http://dx.doi.org/10.1109/IJCNN.2017.7965877
http://dx.doi.org/10.1109/ICPR.2014.607
http://dx.doi.org/10.1016/j.neucom.2017.02.075
http://dx.doi.org/10.1016/j.neucom.2017.02.075

dual-autoencoder for recommendation, Neural Networks 90 (2017) 83–89, http://
dx.doi.org/10.1016/j.neunet.2017.03.009.

[92] R. Memisevic, Gradient-based learning of higher-order image features, IEEE
International Conference on Computer Vision (ICCV), IEEE, 2011, pp. 1591–1598,
http://dx.doi.org/10.1109/ICCV.2011.6126419.

[93] R. Socher, J. Pennington, E.H. Huang, A.Y. Ng, C.D. Manning, Semi-supervised
recursive autoencoders for predicting sentiment distributions, Proceedings of the
Conference on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, (2011), pp. 151–161.

[94] R. Socher, E.H. Huang, J. Pennin, C.D. Manning, A.Y. Ng, Dynamic pooling and
unfolding recursive autoencoders for paraphrase detection, Advances in Neural
Information Processing Systems, (2011), pp. 801–809.

[95] F. Wang, J. Sun, Survey on distance metric learning and dimensionality reduction
in data mining, doi:10.1007/s10618-014-0356-z.

[96] R. Salakhutdinov, G.E. Hinton, Learning a nonlinear embedding by preserving
class neighbourhood structure, International Conference on Artificial Intelligence
and Statistics, (2007), pp. 412–419.

[97] L.V.D. Maaten, E. Postma, J.V.d. Herik, Dimensionality Reduction: A Comparative
Review, Technical report.

[98] I.T. Jolliffe, Introduction, Principal Component Analysis, Springer, 1986, pp. 1–7,
http://dx.doi.org/10.1007/978-1-4757-1904-8.

[99] I.T. Jolliffe, Principal component analysis and factor analysis, Principal compo-
nent analysis, Springer, 1986, pp. 115–128, http://dx.doi.org/10.1007/978-1-
4757-1904-8.

[100] R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugen
7 (2) (1936) 179–188, http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x.

[101] W.S. Torgerson, Multidimensional scaling: I. Theory and method, Psychometrika
17 (4) (1952) 401–419, http://dx.doi.org/10.1007/BF02288916.

[102] J.W. Sammon, A nonlinear mapping for data structure analysis, IEEE Trans.
Comput. 100 (5) (1969) 401–409, http://dx.doi.org/10.1109/T-C.1969.222678.

[103] W. Yu, G. Zeng, P. Luo, F. Zhuang, Q. He, Z. Shi, Embedding with autoencoder
regularization, in: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 208–223. doi:10.1007/978-3-642-40994-
3_14.

[104] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear em-
bedding, Science 290 (5500) (2000) 2323–2326, http://dx.doi.org/10.1126/
science.290.5500.2323.

[105] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data
representation, Neural Comput. 15 (2003) 1373–1396, http://dx.doi.org/10.
1162/089976603321780317.

[106] K. Jia, L. Sun, S. Gao, Z. Song, B.E. Shi, Laplacian auto-encoders: an explicit
learning of nonlinear data manifold, Neurocomputing 160 (2015) 250–260,
http://dx.doi.org/10.1016/j.neucom.2015.02.023.

[107] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, Ch. Deep Generative Models,
MIT Press, 2016, pp. 651–716. http://www.deeplearningbook.org .

[108] P. Smolensky, Information Processing in Dynamical Systems: Foundations of
Harmony Theory, Technical report, Colorado University at Boulder, Department of
Computer Science, 1986.

[109] P.M. Long, R. Servedio, Restricted boltzmann machines are hard to approximately
evaluate or simulate, Proceedings of the 27th International Conference on
Machine Learning (ICML-10), (2010), pp. 703–710.

[110] G.E. Hinton, Training products of experts by minimizing contrastive divergence,
Neural Comput. 14 (8) (2002) 1771–1800, http://dx.doi.org/10.1162/
089976602760128018.

[111] J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, A. Madabhushi, Stacked sparse
autoencoder (SSAE) for nuclei detection on breast cancer histopathology images,
IEEE Trans. Med. Imaging 35 (1) (2016) 119–130, http://dx.doi.org/10.1109/tmi.
2015.2458702.

[112] C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv:1304.5634.
[113] T. Ye, T. Wang, K. McGuinness, Y. Guo, C. Gurrin, Learning multiple views with

orthogonal denoising autoencoders, in: Q. Tian, N. Sebe, G.-J. Qi, B. Huet,
R. Hong, X. Liu (Eds.), MultiMedia Modeling, volume 9516, Springer International
Publishing, 2016, pp. 313–324, , http://dx.doi.org/10.1007/978-3-319-27671-
7_26.

[114] Y. Liu, X. Feng, Z. Zhou, Multimodal video classification with stacked contractive
autoencoders, Signal Process. 120 (2016) 761–766, http://dx.doi.org/10.1016/j.
sigpro.2015.01.001.

[115] F. Herrera, F. Charte, A.J. Rivera, M.J. del Jesus, Multilabel Classification.
Problem analysis, metrics and techniques, Springer, 2016, http://dx.doi.org/10.
1007/978-3-319-41111-8.

[116] C.-K. Yeh, W.-C. Wu, W.-J. Ko, Y.-C.F. Wang, Learning deep latent space for multi-
label classification, AAAI Conference on Artificial Intelligence, (2017).

[117] W. Xu, H. Sun, C. Deng, Y. Tan, Variational autoencoder for semi-supervised text
classification, AAAI Conference on Artificial Intelligence, (2017).

[118] N. Kalchbrenner, P. Blunsom, Recurrent continuous translation models.
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Vol. 3, (2013), p. 413.

[119] A.R. R. F. Alvear-Sandoval, Figueiras-vidal, on building ensembles of stacked de-
noising auto-encoding classifiers and their further improvement, Inform. Fus. 39
(2018) 41–52, http://dx.doi.org/10.1016/j.inffus.2017.03.008.

[120] G.K. Wallace, The JPEG still picture compression standard, IEEE Trans. Consum.
Electron. 38 (1) (1992). Xviii–xxxiv. doi:10.1145/103085.103089.

[121] C.C. Tan, C. Eswaran, Using autoencoders for mammogram compression, J. Med.
Syst. 35 (1) (2011) 49–58, http://dx.doi.org/10.1007/s10916-009-9340-3.

[122] T. Dumas, A. Roumy, C. Guillemot, Image compression with stochastic winner-
take-all auto-encoder, 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP 2017), (2017), http://dx.doi.org/10.1109/ICASSP.
2017.7952409.

[123] D.D. Testa, M. Rossi, Lightweight lossy compression of biometric patterns via
denoising autoencoders, IEEE Signal Process. Lett. 22 (12) (2015) 2304–2308,
http://dx.doi.org/10.1109/LSP.2015.2476667.

[124] Y. Miao, P. Blunsom, Language as a latent variable: discrete generative models for
sentence compression, Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, (2016), pp. 319–328.

[125] D. Hsu, Time series compression based on adaptive piecewise recurrent auto-
encoder, arXiv:1707.07961.

[126] C.C. Aggarwal, An introduction to outlier analysis, Outlier Analysis, Springer,
2013, pp. 1–40.

[127] M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear di-
mensionality reduction, ACM Press, 2014, pp. 4–11, http://dx.doi.org/10.1145/
2689746.2689747.

[128] J. Chen, S. Sathe, C. Aggarwal, D. Turaga, Outlier detection with autoencoder
ensembles, Proceedings of the 2017 SIAM International Conference on Data
Mining, SIAM, 2017, pp. 90–98, http://dx.doi.org/10.1137/1.
9781611974973.11.

[129] J. Castellini, V. Poggioni, G. Sorbi, Fake twitter followers detection by denoising
autoencoder, in: Proceedings of the International Conference on Web Intelligence -
WI ’17, ACM Press, New York, New York, USA, pp. 195–202. doi:10.1145/
3106426.3106489.

[130] L. Chi, X. Zhu, Hashing techniques: a survey and taxonomy, ACM Comput. Surveys
(CSUR) 50 (1) (2017) 11, http://dx.doi.org/10.1145/3047307.

[131] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hashing,
Proceedings of the 25th International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers Inc., 1999, pp. 518–529.

[132] R. Salakhutdinov, G. Hinton, Semantic hashing, Int. J. Approximate Reasoning 50
(7) (2009) 969–978, http://dx.doi.org/10.1016/j.ijar.2008.11.006.

[133] G. Salton, E.A. Fox, H. Wu, Extended boolean information retrieval, Commun.
ACM 26 (11) (1983) 1022–1036, http://dx.doi.org/10.1145/182.358466.

[134] M. Carreira-Perpinán, W. Wang, Distributed optimization of deeply nested sys-
tems, Artificial Intelligence and Statistics, (2014), pp. 10–19.

[135] M.A. Carreira-Perpinán, R. Raziperchikolaei, Hashing with binary autoencoders,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
(2015), pp. 557–566, http://dx.doi.org/10.1109/CVPR.2015.7298654.

[136] U.M. Fayyad, A. Wierse, G.G. Grinstein, Information Visualization in Data Mining
and Knowledge Discovery, Morgan Kaufmann, 2002.

[137] G.E. Hinton, Reducing the dimensionality of data with neural networks, Science
313 (5786) (2006) 504–507, http://dx.doi.org/10.1126/science.1127647.

[138] O.L. Mangasarian, W.N. Street, W.H. Wolberg, Breast cancer diagnosis and prog-
nosis via linear programming, Oper. Res. 43 (4) (1995) 570–577, http://dx.doi.
org/10.1287/opre.43.4.570.

[139] T.-C. Poon, Digital Holography and Three-Dimensional Display: Principles and
Applications, Springer Science & Business Media, 2006, http://dx.doi.org/10.
1007/0-387-31397-4.

[140] T. Shimobaba, Y. Endo, R. Hirayama, Y. Nagahama, T. Takahashi, T. Nishitsuji,
T. Kakue, A. Shiraki, N. Takada, N. Masuda, et al., Autoencoder-based holographic
image restoration, Appl. Opt. 56 (13) (2017) F27, http://dx.doi.org/10.1364/ao.
56.000f27.

[141] L. Gondara, Medical image denoising using convolutional denoising autoencoders,
2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW),
(2016), pp. 241–246, http://dx.doi.org/10.1109/ICDMW.2016.0041.

[142] X. Lu, Y. Tsao, S. Matsuda, C. Hori, Speech enhancement based on deep denoising
autoencoder, 14th Annual Conference of the International Speech Communication
Association (INTERSPEECH), (2013).

[143] T. Ishii, H. Komiyama, T. Shinozaki, Y. Horiuchi, S. Kuroiwa, Reverberant speech
recognition based on denoising autoencoder, 14th Annual Conference of the
International Speech Communication Association (INTERSPEECH), (2013).

[144] D.T. Grozdić, S.T. Jovičić, Whispered speech recognition using deep denoising
autoencoder and inverse filtering, IEEE/ACM Trans. Audio Speech Lang. Process.
25 (12) (2017) 2313–2322, http://dx.doi.org/10.1109/TASLP.2017.2738559.

[145] G.H. Golub, C. Reinsch, Singular value decomposition and least squares solutions,
Numerische mathematik 14 (5) (1970) 403–420, http://dx.doi.org/10.1007/
BF02163027.

[146] C. Hong, J. Yu, J. Wan, D. Tao, M. Wang, Multimodal deep autoencoder for human
pose recovery, IEEE Trans. Image Process. 24 (12) (2015) 5659–5670, http://dx.
doi.org/10.1109/tip.2015.2487860.

[147] H. Zhou, T. Zhang, W. Lu, Vision-based pose estimation from points with unknown
correspondences, IEEE Trans. Image Process. 23 (8) (2014) 3468–3477, http://dx.
doi.org/10.1109/TIP.2014.2329765.

[148] J. Vig, S. Sen, J. Riedl, Tagsplanations: explaining recommendations using tags,
Proceedings of the 14th international conference on Intelligent user interfaces,
ACM, 2009, pp. 47–56, http://dx.doi.org/10.1145/1502650.1502661.

[149] F. Charte, A.J. Rivera, M.J. del Jesus, F. Herrera, Quinta: a question tagging as-
sistant to improve the answering ratio in electronic forums, IEEE EUROCON 2015-
International Conference on Computer as a Tool, IEEE, 2015, pp. 1–6, http://dx.
doi.org/10.1109/EUROCON.2015.7313677.

[150] H. Wang, X. Shi, D.-Y. Yeung, Relational stacked denoising autoencoder for tag
recommendation, Twenty-Ninth AAAI Conference on Artificial Intelligence,
(2015).

[151] Q. Zhang, L.T. Yang, Z. Chen, P. Li, A survey on deep learning for big data, Inform.
Fus. 42 (2018) 146–157, http://dx.doi.org/10.1016/j.inffus.2017.10.006.

[152] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, et al., Tensorflow: a system for
large-scale machine learning, Proceedings of the 12th USENIX Conference on

D. Charte et al. Information Fusion 44 (2018) 78–96

95

http://dx.doi.org/10.1016/j.neunet.2017.03.009
http://dx.doi.org/10.1016/j.neunet.2017.03.009
http://dx.doi.org/10.1109/ICCV.2011.6126419
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0089
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0089
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0089
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0089
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0090
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0090
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0090
https://doi.org/10.1007/s10618-014-0356-z
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0091
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0091
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0091
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1007/BF02288916
http://dx.doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1007/978-3-642-40994-3_14
https://doi.org/10.1007/978-3-642-40994-3_14
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1016/j.neucom.2015.02.023
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0100
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0100
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0101
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0101
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0101
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0102
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0102
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0102
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1109/tmi.2015.2458702
http://dx.doi.org/10.1109/tmi.2015.2458702
http://arxiv.org/abs/1304.5634
http://dx.doi.org/10.1007/978-3-319-27671-7_26
http://dx.doi.org/10.1007/978-3-319-27671-7_26
http://dx.doi.org/10.1016/j.sigpro.2015.01.001
http://dx.doi.org/10.1016/j.sigpro.2015.01.001
http://dx.doi.org/10.1007/978-3-319-41111-8
http://dx.doi.org/10.1007/978-3-319-41111-8
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0106
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0106
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0107
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0107
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0108
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0108
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0108
http://dx.doi.org/10.1016/j.inffus.2017.03.008
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0110
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0110
http://dx.doi.org/10.1007/s10916-009-9340-3
http://dx.doi.org/10.1109/ICASSP.2017.7952409
http://dx.doi.org/10.1109/ICASSP.2017.7952409
http://dx.doi.org/10.1109/LSP.2015.2476667
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0114
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0114
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0114
http://arxiv.org/abs/1707.07961
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0115
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0115
http://dx.doi.org/10.1145/2689746.2689747
http://dx.doi.org/10.1145/2689746.2689747
http://dx.doi.org/10.1137/1.9781611974973.11
http://dx.doi.org/10.1137/1.9781611974973.11
https://doi.org/10.1145/3106426.3106489
https://doi.org/10.1145/3106426.3106489
http://dx.doi.org/10.1145/3047307
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0119
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0119
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0119
http://dx.doi.org/10.1016/j.ijar.2008.11.006
http://dx.doi.org/10.1145/182.358466
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0122
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0122
http://dx.doi.org/10.1109/CVPR.2015.7298654
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0124
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0124
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1287/opre.43.4.570
http://dx.doi.org/10.1287/opre.43.4.570
http://dx.doi.org/10.1007/0-387-31397-4
http://dx.doi.org/10.1007/0-387-31397-4
http://dx.doi.org/10.1364/ao.56.000f27
http://dx.doi.org/10.1364/ao.56.000f27
http://dx.doi.org/10.1109/ICDMW.2016.0041
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0129
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0129
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0129
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0130
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0130
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0130
http://dx.doi.org/10.1109/TASLP.2017.2738559
http://dx.doi.org/10.1007/BF02163027
http://dx.doi.org/10.1007/BF02163027
http://dx.doi.org/10.1109/tip.2015.2487860
http://dx.doi.org/10.1109/tip.2015.2487860
http://dx.doi.org/10.1109/TIP.2014.2329765
http://dx.doi.org/10.1109/TIP.2014.2329765
http://dx.doi.org/10.1145/1502650.1502661
http://dx.doi.org/10.1109/EUROCON.2015.7313677
http://dx.doi.org/10.1109/EUROCON.2015.7313677
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0136
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0136
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0136
http://dx.doi.org/10.1016/j.inffus.2017.10.006
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0138
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0138

Operating Systems Design and Implementation, OSDI’16, (2016), pp. 265–283.
[153] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

T. Darrell, Caffe: convolutional architecture for fast feature embedding, 2014,
675–678.

[154] R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: a matlab-like environment for
machine learning, BigLearn, NIPS Workshop, (2011).

[155] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang,
Mxnet: a flexible and efficient machine learning library for heterogeneous dis-
tributed systems, arXiv:1512.01274.

[156] F. Chollet, et al., Keras, 2015, https://github.com/fchollet/keras.
[157] T.D. Team, Theano: a python framework for fast computation of mathematical

expressions, arXiv:1605.02688.
[158] E. Dubossarsky, Y. Tyshetskiy, Autoencoder: sparse autoencoder for automatic

learning of representative features from unlabeled data, 2015, R package version
1.1. https://CRAN.R-project.org/package=autoencoder.

[159] S. Hogg, E. Dubossarsky, SAENET: a stacked autoencoder implementation with
interface to ’neuralnet’, 2015, R package version 1.1. https://CRAN.R-project.org/
package=SAENET.

[160] D. Ciregan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for
image classification, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, 2012, pp. 3642–3649.

D. Charte et al. Information Fusion 44 (2018) 78–96

96

http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0138
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0139
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0139
http://arxiv.org/abs/1512.01274
https://github.com/fchollet/keras
http://arxiv.org/abs/1605.02688
https://CRAN.R-project.org/package=autoencoder
https://CRAN.R-project.org/package=SAENET
https://CRAN.R-project.org/package=SAENET
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0140
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0140
http://refhub.elsevier.com/S1566-2535(17)30784-4/sbref0140

	A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
	Introduction
	mk:H2_2
	mk:H2_3
	Feature engineering [19]
	Feature learning [20]
	Representation learning [20]
	Feature selection [22]
	Feature extraction [28]
	Feature fusion [36]

	Autoencoder essentials
	General structure
	Activation functions of common use in autoencoders
	Autoencoder groups according to network structure
	Autoencoder taxonomy
	mk:H2_15
	Lower dimensionality
	Regularization
	Noise tolerance
	Generative model

	Usual applications

	Autoencoders for feature fusion
	Basic autoencoder
	Structure
	Objective function
	Training
	Stacking

	Regularization
	Sparse autoencoder
	Contractive autoencoder

	Noise tolerance
	Denoising autoencoder
	Robust autoencoder

	Domain specific autoencoders
	mk:H2_34
	Convolutional autoencoder [75]
	LSTM autoencoder [77]

	Generative models
	mk:H2_38
	Variational autoencoder [79]
	Adversarial autoencoder [83]

	Other autoencoders farther from feature fusion
	Autoencoder-based architectures for feature learning

	Comparison to other feature fusion techniques
	Linear approaches
	Nonlinear approaches

	Applications in feature learning and beyond
	Classification
	Data compression
	Detection of abnormal patterns
	Hashing
	Data visualization
	Other applications of autoencoders

	Guidelines, software and examples on autoencoder design
	Guidelines
	Software
	Available frameworks and packages
	Tensorflow [152]
	Caffe [153]
	Torch [154]
	MXNet [155]
	Keras [156]
	Example of use

	Case study: handwritten digits
	Settings of encoding length
	Comparison of optimizers
	Comparison of activation functions
	Comparison of the main AE models

	Conclusions
	Acknowledgments
	Description of used datasets
	Breast cancer diagnosis (wisconsin)
	MNIST

	References

