Modeling the Transformation of Olive Tree
Biomass into Bioethanol with Reg-CO?RBFN

Francisco Charte Ojeda!, Inmaculada Romero Pulido?,
Antonio Jests Rivera Rivas!®) | and Eulogio Castro Galiano?

! Department of Computer Science, University of Jaén, Jaén, Spain
{fcharte,arivera}l@ujaen.es
2 Department of Chemical, Environmental and Materials Engineering,
University of Jaén, Jaén, Spain
{iromero,ecastro}@ujaen.es

Abstract. Research in renewable energies is a global trend. One remark-
able area is the biomass transformation into biotehanol, a fuel that can
replace fossil fuels. A key step in this process is the pretreatment stage,
where several variables are involved. The experimentation for determin-
ing the optimal values of these variables is expensive, therefore it is neces-
sary to model this process. This paper focus on modeling the production
of biotehanol from olive tree biomass by data mining methods. Notably,
the authors present Reg-CO?RBFN, an adaptation of a cooperative-
competitive designing method for radial basis function networks. One
of the main drawbacks in this modeling is the low number of instances
in the data sets. To compare the results obtained by Reg-CO?’RBFN,
other well-known data mining regression methods are used to model the
transformation process.
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1 Introduction

Nowadays, the interest for renewable energy is increasing [1]. Olive tree biomass
(OTB) is an abundant organic residual in Mediterranean countries that can be
converted in bioethanol. Due to the benefits of olive oil, olive tree cultivation
is expanding worldwide. In these places olive trees are periodically pruned to
rejuvenate them, as well as to prevent propagation of diseases. The process for
obtaining bioethanol from OTB has the following advantages: large availability of
OTB, low cost, CO5 emissions reduction when this fuel is used, and a decreasing
of dependency on energy imports.

The basic steps in the production of bioethanol from OTB are pretreatment,
enzymatic hydrolysis and fermentation. One of the main steps is the pretreat-
ment stage [2], whose performance can be affected by several factors such as
processing time, temperature and the use of different salts. Therefore, for the
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experts involved in the field it is important to adequately model or characterize
this process. A key challenge in this modeling is the low number of data samples
(instances) available in the experimentation, due to the high costs involved in
obtaining them.

Data mining methods have been successfully used for regression tasks [3]
even in the renewable energy field [4-7]. Together with Multilayer Perceptron
(MLPs) [8], Radial Basis Function Networks (RBFNs) are one the best well-
known and important Artificial Neural Network (ANN). The efficacy of RBFNs
has been proved in many areas, including regression [9]. The authors have devel-
oped CO?RBFN, a cooperative-competitive evolutionary RBFN design method
[10] that has been successfully used for regression in the modeling of concentrated
photovoltaic modules [5].

In this paper Reg-CO?RBFN, an adaptation of CO?2RBFN, is applied to the
problem of modeling the bioethanol conversion process from OTB. The main
objective of this adaptation is facing the training with a low number of instances
per data set. With this aim, a supervised clustering algorithm is introduced in the
initialization step of the algorithm. Other recognized data mining methods, such
as a MLP trained with the backpropagation technique and a Suppport Vector
Machine, have been also used to model the same process. The performance of
Reg-CO?RBFN and these other methods will be compared.

This paper is organized as follows: Sect.2 depicts the bioethanol produc-
tion process. The Reg-CO?RBFN method is described in Sect. 3. In Sect.4 the
experimental framework is outlined and the results obtained are presented. The
results produced by the proposed method are compared with that obtained by
other data mining models, as explained in this section. Finally, the conclusions
appear in Sect. 5.

2 Bioethanol Production from Olive Tree Biomass

OTB is a lignocellulose material and it is considered a promising candidate to
be transformed into renewable fuels, therefore substituting the well-known fossil
fuels [1] at some extent. The pruning of olive trees generates a huge amount of
biomass that is dismissed or must be eliminated, for example by burning it. Tak-
ing into account environmental considerations, the transformation of OTB into
bioethanol implies several advantages. It is a clean way of eliminating organic
residuals, and implies a net reduction of CO5 emissions when this fuel is used.
In addition, it reduces the dependency from fuel imports.

The process of converting a lignocellulose material into bioethanol includes
three steps: pretreatment, enzymatic hydrolysis and fermentation. Pretreatment
is a key step in the whole process and has a direct influence over the hydroly-
sis step [2]. The objective of this first step is to achieve maximal fermentation
yields and rates. The use of FeCls, a metal salt, has demonstrated its efficacy
in the pretreatment phase. This salt concentration, along with the settings for
temperature and time, define the input variables of the pretreatment. From the
pretreatment experiments, liquids and pretreated solids are obtained and sepa-
rated by filtration. At this time, the content of glucose and hemicellulosic sugars
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in both fractions can be determined. Then, the pretreated solids are further
submitted to enzymatic hydrolysis under standard conditions, and the enzy-
matic hydrolysis yield for each experiment (grams of glucose in the hydrolysate
per gram of glucose in the pretreated material or in the original material) is
evaluated.

This research was carried out in Jaén (Spain), collecting the OTB from its
olive tree fields. Due to the costs involved in performing empirical pretreatment
analysis, only twenty experiments were conducted. The Box-Behnken method-
ology was used to equally distribute the values of experiments (instances). For
a further explanation see [11].

In summary, the objective is to model the process of transforming a lignocel-
lulose material into bioethanol. In this model the input variables are: duration of
the pretreatment (Time), its temperature (Temp) and the molar concentration
of FeCls (FeCl3). The output variables are the Enzymatic Hydrolysis Yields in
Raw Material (EHYRM) and Enzymatic Hydrolysis Yields in Pretreated Mater-
ial (EHYPM). The low number of the conducted experiments implies a challenge
for most learning methods.

3 Reg-CO2RBFN: Adaptation of CO2RBFN for
Regression Tasks

In this paper a hybrid evolutionary cooperative-competitive model for designing
RBFNs is proposed. This section starts providing a brief introduction to this
type of neural networks, in Sect.3.1. Then, in Sect. 3.2, the detailed description
of the proposed model, Reg-CO?RBFN, is addressed.

3.1 Radial Basis Function Networks

RBFNs are an artificial neural network paradigm [12] with remarkable character-
istics, such as simple topological structure and universal approximation ability
[9]. The topology of an RBFN is composed by three feed-forward connected lay-
ers: an input layer with n nodes, a hidden layer with m neurons or RBFs, and
an output layer with one node for regression problems.

The neurons in the hidden layer present a radially-symmetric basis activation
function, ¢; : R" — R, which can be defined with several shapes, being the
Gaussian function (1) the most widely used.

¢i(x) = 6_(”$—ci\|/di)2 ’

where ¢; € R™ is the center of the basis function ¢;, d; € R is the width (radius),
and ||| is typically the Euclidean norm on R™. This expression is the one used
in this paper as RBF.

The output neuron implements the weighted sum of RBF outputs in the
hidden layer, as can be seen in Eq.2, where w; are the weights. Each one of
them represents the contribution of one RBF to the output node.
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f(z) = Zwi¢i(w) (2)

The main goal in the RBFN design process consists in determining the centers
and widths of the neurons (RBFs) in the hidden layer, as well as the linear output
weights connecting the RBFs to the output neuron.

An important paradigm for designing RBFNs is Evolutionary Computation
(EC) [13-15]. EC uses natural evolution and stochastic searching to design opti-
mization algorithms. Concretely, EC evolves a population of individuals accord-
ing to operators as mutation, recombination or selection, and each individual
in the population receives a measure proportional to its quality, called fitness.
Reviews on EC applied to RBFN design can be found in [16,17].

3.2 The Proposed Method, Reg-CO?RBFN

As mentioned, the presented method is a cooperative-competitive evolutionary
proposal for designing RBFNs. In this methodology each individual of the popu-
lation corresponds to one RBF, and the entire population implements the whole
solution. The individuals cooperate towards a definitive solution, but they must
also compete for survival.

In this environment, in which the solution depends on the behavior of many
components, the fitness of each individual is known as credit assignment. In
order to measure the credit assignment of an individual three factors have been
proposed: the RBF contribution to the network output, the error in the basis
function radius and the degree of overlapping among RBF's.

The application of the operators is determined by a Fuzzy Rule-Based Sys-
tem (FRBS). The inputs of the FRBS are the three parameters used for credit
assignment, and the outputs are the operators’ application probability.

Algorithm 1. CO2RBFN algorithm main steps.
1: Initialize RBFN

while(Stop condition is not met) > Training loop

2:
3: Evaluate RBF's

4: Apply operators to RBF's

5: Substitute the eliminated RBFs
6 Select the best RBFs

In the adapted version presented in this work, the network initialization
step has been changed. The new initialization is based on supervised clustering
[18]. Taking into account the low number of instances, the aim is introducing a
previous analysis of the data, before the evolutionary phase, that reinforces the
learning process. The main steps of Reg-CO?RBFN, detailed below, are shown
in Algorithm 1 in pseudocode.
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RBFN Initialization. To initialize the RBFN, an adapted version of the k-
means algorithm [19] is used. K-means is a clustering that aims to partition
the data set into k clusters. Each pattern belongs to a cluster and the cluster
prototype is the mean of the patterns that belongs to this cluster. Thus, each
RBF center, ¢;, is assigned to a previously calculated cluster. According to [18]
the modification carried out consists in taking into account the input and the
output features of the data set during the cluster determination process. The
RBF widths, d;, will be set to the average distance between the centers. Finally,
the RBF weights, w;;, are set to zero.

RBFN Training. To adjust the RBF weights the Singular Value Decompo-
sition (SVD) algorithm [20] is used. SVD is a deterministic technique typically
used in matrix resolution.

RBF Evaluation. In order to evaluate the fitness or credit assignment of each
RBF ¢; in the cooperative-competitive environment, three parameters, a;, €;, 0;
are defined:

— The contribution, a;, of the RBF ¢;, ¢ = 1...m, is determined by considering
its maximum weight. An RBF with a low weight will have a low contribution
and so on.

— The error measure, e;, for each RBF ¢;, is obtained by calculating the Root
Mean Square Error (RMSE) (3) inside its width:

Z (fe — yt)2

= (3)

n

where f; is the output of the model (2) for a point inside the width of RBF
@i, y¢ is the real output at the same point, and n is the number of points
inside the RBF ¢;.

— The overlapping of the RBF ¢; and the other RBFs is quantified by using
the parameter o;. This parameter is computed by taking into account the
fitness sharing methodology [21], whose aim is to maintain the diversity in the
population. This factor is expressed as indicated in Eq. 4, where 0;; measures
the overlapping of the RBFs ¢; and ¢;, j =1...m.

0; = Zoij (4)
j=1

(L= llos — @5ll/di) if [ls — @5l < ds
0ij = (5)
0 otherwise
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Applying Operators to RBFs. Four operators are defined in order to be
applied to the RBFs:

— Operator Remove: eliminates an RBF.

— Operator Random Mutation: the number of coordinates to modify of the
selected RBF is randomly generated between 1 and 25% of the total number
of coordinates. The chosen coordinates are modified in a percentage between
5% and 25% of the old width. The width is adjusted in a similar way to the
coordinates.

— Operator Biased Mutation: modifies the width and some coordinates of the
center, between 1 and 25% of the total number of coordinates, using local
information of the RBF environment. Concretely, the patterns inside the RBF
width are determined and the new coordinates are allocated in the average of
the corresponding patterns coordinates. This technique follows the clustering
methodology [19]. The width is obtained by changing its old values to a
random number (between 5% and 25%).

— Operator Null: in this case any operator is applied.

The probability of applying an operator to a given RBF is determined by
means of a Mandani-type FRBS [22] which represents expert knowledge in order
to obtain a simple and accurate RBFN.

The inputs of this system are the parameters used to define the credit assign-
ment of the RBF, and the outputs represent the probability of applying Remove,
Random Mutation, Biased Mutation and Null operators, respectively. Table 1
shows the rule base used to relate the described antecedents and consequents.

Table 1. Fuzzy rule base representing expert knowledge in the design of RBFN

Antecedents | Consequents Antecedents | Consequents

Va | Ve | Vo | Premove | Prm | Pom | Pnull Va | Ve | Vo | Premove | Prm | Pbm | Pnull
R1|L M-H M-H L L R6 H M-H M-H L L
R2 | M M-L M-H | M-L |M-L | R7 L |L M-H | M-H | M-H
R3 H L M-H | M-H | M-H | R8 M | M-L M-H | M-L | M-L
R4 L L M-H | M-H | M-H  R9 H | M-H M-H | L L
R5 M M-L M-H | M-L | M-L.

For example, the FRBS promotes that an RBF with a poor credit assignment,
low contribution, high error and high overlapping is eliminated. Otherwise the
RBF is maintained.

Introduction of New RBFs. In this step, the removed RBF's are substituted
by new ones. Each new RBF is located at the center of the area with maximum
error. Its width is set to the average of the RBFs. Finally, the weights are set to
Zero.
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Replacement Strategy. In this step the newly generated RBFs are compared
with the original ones, and those with the best behavior are incorporated into
the new population.

4 Experimentation and Results

As mentioned, applying the Box-Behnken methodology twenty chemical pre-
treatment experiments have been conducted to equally space the values of
the data samples (instances) [11], obtaining twenty different data patterns.
These make up the working data set, used to carry out the following model-
ing experimentation.

4.1 Experimental Framework
The input variables used to train the models are the following:

— Duration of the pretreatment (Time), measured in minutes and with values
that oscillates between 0 and 30.

— Temperature of the pretreatment (Temp), which values go from 120 to 180
centigrade degrees.

— Molar concentration of FeCls (FeCl3), whose values are in the range 0.050 to
0.275 M.

The considered output variables are the Enzymatic Hydrolysis Yields in Raw
Material (EHYRM) and Enzymatic Hydrolysis Yields in Pretreated Material
(EHYPM). All the values are summarized in Table 2.

As the number of available patterns is small (only 20), consequently the leave
one out validation is applied. This implies that 20 models haven been developed,
each one of them using 19 patterns for training and the remainder one for testing.

Two evaluation metrics have been computed to assess the methods perfor-
mance: RMSE (Root Mean Square Error) and the coefficient of determination,
R?. RMSE is defined in Eq.6, where n is the number of instances, f; is the
output of the model and y; is the real output for the t-th instance, respectively.

Z(ft _yt)2

R (6)

RMSE =

The quality of the calculated model from the training data is also evaluated
with R2, that obtains the fit between the predicted and the real data (7).

R — (MV (7)
0f0y
where cov(f,y) represents the covariance between the model output and the real

output, and oy and o, are the standard deviations for the model output and the
real output, respectively.
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Table 2. Values from the OTB pretreatment experiments

Input variables Output variables
n | Time | Temp | FeCl3 | EHYRM EHYPM
1 130 120 1 0.125 | 10.14 19.71
210 140 | 0.050 | 12.23 19.92
3 |15 160 |0.050 | 19.57 34.61
4 |0 140 1 0.200 | 11.66 19.43
5 130 140 |0.200 | 19.67 39.94
6 |15 140 1 0.125 | 14.62 23.17
7 15 140 1 0.125 | 15.10 27.34
8 |30 160 |0.125 | 28.07 55.80
9 |15 120 10.050 | 11.85 18.85
10|30 140 |0.050 | 11.08 19.81
11|15 120 |0.200 | 8.76 14.63
12, 0 160 |0.125 | 18.80 33.69
1315 140 1 0.125 | 14.10 25.70
14115 160 |0.200 | 36.50 75.54
15 120 | 0.125 | 12.62 20.07
16 180 | 0.200 | 25.58 93.16
17 160 |0.275 | 28.73 66.87
18|30 180 |0.200 | 20.17 93.55
19|30 160 |0.275 | 38.85 88.71
20|30 180 10.275 | 11.36 96.15

In order to compare the results obtained for the proposed method, other two
data mining methods are used: MLP-BR and NU-SVR. The methods’ names and
their implementation has been obtained from KEEL [23]. A brief description of
this methods follows:

— MLP-BR. This algorithm is a implementation of the well known MLP 8],
one of the most popular ANN methods. An MLP consists of multiple layers
of interconnected hidden nodes. The hidden nodes receive the inputs from
the input layer and calculate outputs which depend on the input and their
activation function. The output calculated by the hidden nodes is forwarded
to the next layer and so on up to reach the network output layer. As learning
technique the model uses back-propagation, the value predicted by the model
is compared with the real one, and the committed error is used to adjust
the weights connecting the units in each layer. This process continues until a
small error is obtained.
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MLP-BR [24], the algorithm used in our experiments, is essentially a multi-
layer perceptron designed to produce a continuous output as prediction, so it
is adapted to regression tasks.

— NU-SVR. This implementation follows the Support Vectorial Machine (SVM)
[25] technique. The training of SVMs consists on solving a quadratic optimiza-
tion problem to find the maximum separation margin between pattern cate-
gories. And adaptation of the basic algorithm, named NU-SVM [26], changes
the C' parameter by other called NU which is easier to adjust.

In [27], SVMs can be seen as an universal tool for solving many task such
as regression problems. The implementation used in this experimentation,
NU-SVR 28], is a regression SVM based on the SMO (Sequential Minimal
Optimization) [29] algorithm. This algorithm reduces the training process and
therefore is more efficient than the traditional learning model.

The values of the configuration parameters for each method are set to the
default ones proposed by the respective authors. The number of executions is
established to three, as these are non-deterministic methods. The main parame-
ters used for the algorithms are shown in Table 3.

Table 3. Parameter specification for the algorithms employed in the experimentation.

Algorithm Parameter Value
Reg-CO?RBFN | Generations of the main loop | 100
Number of RBF's 8
MLP-BP Hidden_layer 1
Hidden_nodes 8
Transfer Htan
Eta 0.15
Alpha 0.10
Lambda 0.0
NU-SVM KERNELtype RBF
C 100.0
Eps 0.001
Degree 1
Gamma 0.01
Coef0 0.0

4.2 Results and Analysis

For each output variable of the hydrolysis process, one model is determined
by each data mining method. The provided performance indicators are average
values from these 20 runs. The results obtained with the training data sets
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Table 4. Results obtained from training data sets

Variable | Reg-CO’RBFN | MLP-BP NU-SVM

R?7 |RMSE | |R?®7 |RMSE | R?7 |RMSE |
EHYRM | 0.8846  2.8440 |0.6807| 5.4435 |0.6622| 6.6978
EHYPM | 0.9919 | 2.5868 | 0.9072|10.7019 |0.8532|18.2879

are shown in Table4. For each method, the RMSE and the R? coefficient are
calculated. The best results are highlighted in bold. For RMSE lower values are
better, whereas for R? higher values are better.

In summary, that the Reg-CO?RBFN method outperforms the remaining
methods, both in RMSE error and R? coefficient for all output variables, can
be concluded from Table 4. By observing the RMSE metric, that MLP-BP and
NU-SVM are clearly outperformed by Reg-CO?RBFN for both variables can
be seen, since MLP-BP and NU-SVM perform quite bad. These results can be
explained by the low number of instances in the training data sets. Regarding
the R? coefficient, Reg-CO?RBFN obtain remarkable values, specially for the
EHYPM variable.

The RMSE obtained by the models from the tests data sets are shown in
Table 5. As before, best results are highlighted in bold.

Table 5. Results obtained from test data sets

Variable | Reg-CO?RBFN | MLP-BP | NU-SVM
EHYRM | 6.5544 7.1525 7.8550
EHYPM | 7.1723 9.8838 22.5404

For the test data sets, it must be noticed that Reg-CO?RBFN outperforms
the other methods, both for the EHYRM and specially for the EHYPM vari-
able, whereas Nu-SVM achieve very bad results, possibly attributable to the low
number of instances available in the data sets as noted before.

5 Conclusions

The chemical research described in this work, carried out in Jaén, has allowed
to obtain bioethanol from olive tree biomass. This study represents another
contribution inside the renewable energy field. There are various parameters
or variables involved in the process of obtaining bioethanol. In addition, the
experimentation is expensive and also time consuming. For this reasons, it is
important to automatically obtain a model able to explain the process.

In this paper three data mining methods have been used to modeling
the process: Reg-CO?RBFN, an RBFN designing technique developed by the
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authors, an MLP and an SVM. The main problem for the data mining meth-
ods is the low number of experiments (instances) available due to the high cost
previously mentioned.

The data mining methods have been trained and have produced a model
for each output variable. The results obtained show that Reg-CO?RBFN has a
good behavior in spite of the low training data available, and outperforms the
remaining data mining methods for the output variables in the study.

As future work a multi-target regression version of Reg-CO?RBFN will be
studied.
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