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Abstract. A large amount of the data processed nowadays is multil-
abel in nature. This means that every pattern usually belongs to several
categories at once. Multilabel data are abundant, and most multilabel
datasets are quite large. This causes that many multilabel classification
methods struggle with their processing. Tackling this task by means of
big data methods seems a logical choice. However, this approach has been
scarcely explored by now. The present work introduces several big data
multilabel classifiers, all of them based on decision trees. After detailing
how they have been designed, their predictive performance, as well as
the execution time, are analyzed.
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1 Introduction

Pattern classification is among the most popular machine learning (ML) tasks.
Usually, each data pattern is associated to one category (the class label). Starting
from a set of previously labeled samples, classification algorithms train a model
(the classifier). Once trained, the classifier can be shown new unlabeled patterns
and it produces the predicted label as output. Decision trees (DT) are well-
known classifiers [1], quick to build and easily interpretable. DT ensembles, such
as Random Forest (RF) [2], are also quite effective, producing good predictive
performance.

A large part of the data generated nowadays is made of patterns linked to
several categories at once, instead of only one. Music clips can produce a subset
of the existing emotions [3], images can be categorized into several groups [4],
blog posts and questions in forums are assigned a set of tags [5], etc. The task
of learning from data pattern which are assigned several labels is known as
multilabel classification (MLC) [6]. The use of DTs in MLC, multilabel DTs
(MDTs), is also a common option.

The amount of new images, videos, music clips, blog posts and other mul-
tilabel contents uploaded everyday to the Internet is impressive. As a conse-
quence, MLC algorithms have to be able to process large datasets, a work that
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usually takes a long time. Facing this problem through Big Data (BD) tech-
niques, notably by distributing the workload among a group of machines, seems
a natural choice. Nonetheless, it is a barely explored alternative.

This work aims to propose five different MDT implementations based on BD
techniques. Three of them are BD multilabel versions of the well-known ID3 [7],
CART [8] and C4.5 [9] algorithms. The other two are ensembles of MDTs, as
it is known that ensembles tend to improve classification results. In addition,
ensembles are easier to parallelize in a BD environment than other techniques.
The five proposals will be experimentally tested with a double goal. Firstly,
the predictive performance of each alternative will be compared. Secondly, the
improvement in running time as the number of parallel nodes is increased is
analyzed.

The remainder of this paper is structured as follows. Section 2 introduces the
foundations of MLC and some concepts related to DTs designed to work with
BD infrastructure. The five proposed MDTs for BD are presented in Sect. 3. In
Sect. 4 the experimental framework is detailed and results are discussed. Finally,
some conclusions are drawn in Sect. 5.

2 Preliminaries

The methods presented in Sect.3 are MDTs designed for BD environments.
Therefore, it is essential to know the foundations of MLC, introduced in Sub-
sect. 2.1, as well as some notions about BD infrastructures such as Hadoop and
Spark, brought in Subsect. 2.2.

2.1 Multilabel Classification

Multilabel datasets (MLDs) emerge naturally in certain fields, such as music
and video categorization [3,10], image tagging [4], document classification [11]
or gene function identification [12]. An MLD can be defined as a subset of
Ay x Ag X ... x Ay x P(L), being A; the f input features and P(L) the powerset
of L, the full set of labels appearing in the data. There is no difference between
the input space of an MLD and a traditional dataset. By contrast, the output
space of the former is made of a set of 0s and 1s (labelset), stating which of the
labels in £ are relevant for each pattern. Therefore, a classifier have to be able
to predict several outputs simultaneously.

Aside of the number of labels, which can be seen as the length of the labelset,
several other metrics can be extracted from the samples’ labelsets [13]. The two
most common are label cardinality (Card) and label density (Dens). Y; being the
labelset of the ith-instance in the MLD D, Card (1) is simply the average number
of relevant labels in the MLD. Dens (2) is the normalized label cardinality’.

! Card, Dens and many other multilabel characterization metrics can be easily
obtained with the mldr package [14].
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MLC has been faced mainly through two different approaches [6], data trans-
formation and method adaptation. The former aims to produce binary or mul-
ticlass datasets from the MLD, so that they can be processed with traditional
classification algorithms. The latter, on the contrary, advocates for rewriting
these traditional algorithms, making them able to work with multilabel data
natively.

Although several transformation methods have been proposed in the litera-
ture, two of them stand out because are frequently used as foundation of many
other algorithms. They are Binary Relevance (BR) and Label Powerset (LP).

— BR consists in producing as many binary datasets as labels there are in
the MLD, training an independent classifier for each label. The predictions
provided by these classifiers are joined to obtain the final labelset. Obviously,
the number of models to build (and the time needed to do it) increases linearly
with the number of labels.

— Whereas BR relies in binary classifiers, LP do it in multiclass ones. The
trick lies in considering each distinct labelset as class identifier. The major
drawback of this approach is that theoretically 2!l different classes could
exist.

Regarding the method adaptation approach, multilabel algorithms based on
the best known models, such as trees [15], neural networks [16], support vector
machines [12] or nearest neighbors [17], can be found in the literature.

2.2 Decision Trees for Big Data

The recent advances in communications and storage technologies have led to the
emergence of big databases, in a context where ”big” has to be understood as
beyond the processing capacity of current personal computers. The answer to
this scenario was the use of clusters of computers. For facing complex ML tasks
different BD frameworks have been developed over time, such as Hadoop and
Spark [18], both from the Apache Foundation.

Hadoop relies on an own distributed file system [19], named HDFS, and the
approach to distribute the workload is the popular Map-Reduce [20]. Unlike
Hadoop, Spark supports in-memory data sharing. This technique produces a
noticeable improvement in running time, notably when multiple-pass computa-
tions over the data are needed. Depending on specific conditions, Spark runs
as 100 times faster than Hadoop. In addition, a basic library of ML methods
running over Spark, named MLIib [21], is available. Among the provided ML
algorithms, a generic ID3/CART DT can be found.

The cornerstone of Spark is the Resilient Distributed Dataset (RDD). It
represents a data collection that is distributed among a set of machines (cluster
nodes). Spark is able to cache RDDs in memory, reusing them between successive
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parallel operations. In the following, we refer to the number of nodes used to
process the data as number of RDD partitions. The goal of an Spark cluster is
to reduce the total running time by distributing the workload among its nodes.
Therefore, the more nodes there are in the cluster, the less time will be spent
in processing the data. However, partitioning and distributing the data is also a
time-consuming task. Depending on the amount of data, this preparatory work
could take longer than the reduction obtained by the parallelization. So the
number of RDD partitions is a parameter that could need some adjustment.

3 Multilabel Decision Trees for Big Datasets

Taking as foundation the generic tree implementation provided by MLIib [21],
the data mining library for Spark, three MDT algorithms were designed, ID3,
CART and C4.5. All of them are based on the LP transformation, previously
defined, so the labelsets are taken as class identifiers. Then, two ensembles of
MDTs are also proposed, BR and RF. The details about these proposals are
provided in the following subsections.

3.1 Classifiers Based on Single MDT

To learn a single MDT from an MLD, instead of a collection of binary trees, the
LP transformation has been used. Thus, each labelset in an MLD is taken as the
class identifier. In addition, multilabel versions of entropy and the Gini index,
the metrics used to decide the variable used in each split of the tree, are needed.
Based on [15], and being £ the full set of labels in the MLD, p(l) the proba-
bility of I being relevant and ¢(I) = 1 —p(l), the entropy measurement is defined
as shown in (3). Analogously, (4) corresponds to the Gini index computation.

Entropy = — > _p(1)log p(1) + (1) log q(1) (3)
leL
Gini=1-> p(l)* +q(1)? (4)
leL

Based on the MLIlib implementation of ID3 [7], a multilabel version using
(3) and the LP transformation was implemented. In the same way, the MLIlib’s
version of CART [8] was adapted to work with MLDs, using (4) and the same
transformation. Since C4.5 is not available in MLIlib, it was written as extension
of the existing ID3 algorithm following [9]. This implied essentially implementing
the pruning procedure of C4.5, producing smaller trees with a better ability of
generalization.

The main difference between the classical implementation of these methods
and the one made here, based on Spark, is that the latter parallelizes the task
of evaluating the goodness of the attributes to be used in each split.
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3.2 Classifiers Based on Ensembles

Tree ensembles, such as RF, are among the most popular and best performing
classifiers. Since they train several independent models, ensembles are specially
suitable for work distribution in a cluster. Each tree will be built independently,
once the data partitions have been sent to each node.

The first ensemble is based on the BR transformation, using C4.5 as underly-
ing classifier. Therefore, there will be as many trees as labels in the MLD. Each
one will learn to differentiate patterns for which one label is relevant against all
the others, as explained in Sect.2. The predictions provided by the individual
trees, at test time, are later combined to get the full labelset.

RF is proposed as the second MDT ensemble. As in BR, this approach also
generates multiple trees. However each one is a MDT processing all labels, not
a binary tree. A random subset of the input features is chosen to train the trees,
as usual in RF. The trees are built with the multilabel C4.5 version described in
the previous subsection. The maximum tree depth is set to 5 and the ensemble
uses 100 trees, as recommended in [22].

4 Experimentation

In this section how the previously described methods have been empirically
tested is explained. Section4.1 outlines the experimental framework. The con-
ducted experimentation has two main goals. Firstly, the classification perfor-
mance produced by each one of the MDT implementations will be assessed in
Sect.4.2. Later, in Sect. 4.3, the execution time of each method, as well as the
influence of the number of partitions in running time, will be analyzed. This
way, the best algorithm could be chosen according to time restrictions and clas-
sification performance demands, as discussed in Sect. 4.4.

4.1 Experimental Framework

The MDTs have been tested using six MLDs? having disparate traits, as shown
in Table 1. Three of them, medical [24], slashdot [25] and tmc2007 [11] come
from the text domain, emotions [3] and scene [4] have their origin in the mul-
timedia sources, while yeast [12] was produced from genetic data. The number
of instances and attributes will mainly impact the execution time of the algo-
rithms. On the other hand, the number of labels and cardinality are attributes
that influence the predictive behavior of the models. Depending on the transfor-
mation applied to the data, the number of labels can also increase the running
time.

Each MLD was partitioned following a 5 folds cross validation, thus each run
used 80% of data to train the model and the remainder 20% as test patterns.
Reported results are mean values over these 5 runs per MLD /method.

2 All of them can be found in the RUMDR, [23] repository.
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Table 1. Main characteristics of the MLDs

Dataset | Instances | Attributes | Labels | Cardinality
emotions 593 72 6 1.869
medical 978 1449 45 1.245
scene 2 407 294 6 1.074
slashdot | 3 782 1079 22 1.181
tmc2007 28 596 500 22 2.158
yeast 2 417 198 14 4.237

Aiming to analyze how the number of RDD partitions affected execution
time, the training and testing was repeated six times using a different configura-
tion. The used values are 1, 2, 4, 8, 16, 32 and 64. Theoretically, as the number
of RDD partitions grows execution time should decrease, since the work is dis-
tributed among a larger amount of machines. The cluster used has 14 nodes and
each node disposes of 2 x Intel Xeon E5-2670v2 and 64 GB of RAM.

The predictions made by each classifier were assessed by means of five per-
formance metrics. Let Y; be the ground truth labelset of the ith-instance, Z;
the predicted one, A the symmetrical difference, and [] the Iverson operator
(returns 1 if the expression is true, 0 otherwise). Hamming Loss (5), Accuracy
(6), F-Measure (8), and Subset Accuracy (9) are defined as follows. Hamming
Loss is a loss metric, so the lower the value the better is performing the classifier.
For the other four metrics, higher values are better.

n

Hamming Loss = %l ZZ;D/AZ fl (5)

Accuracy = Z :1}//; 8 2: (6)

Precision = Z [YinZ |, Recall = Z [¥: 0 2] (7)
|Zi] Yl

F-Measure =2+ ﬁffﬁffffg :ﬁiilfz T orP +2§£ +FN ®)

Subset Accuracy = % il[[Yz =Z,] (9)

Micro F-Measure (10) differs from F-Measure in the way it is averaged.
Instead of computing the metric for each instance, the true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) for all the instances
are aggregated, then the measure is computed. £ denotes the full set of labels
appearing in the MLD. Additional details about all these metrics can be found
in [6].
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Micro F-Measure = F—Measure(z TP, Z FPy, Z TN, Z FN) (10)
lec lec lec lec

In addition to the previous metrics, running times were also gathered to
compare the influence of the number of RDD partitions in the total execution
time.

4.2 Classification Performance

Firstly, the interest is in determining which one of the MDTs produces better
classification results. The values corresponding to each evaluation metric are
depicted in Fig. 1. Each bar plot shows results for the six MLDs processed with
the five algorithms. As can be observed, the bar associated to RF is noticeable
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Fig. 1. Classification results
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Table 2. Classification results

Metric Dataset ID3 C4.5 CART RF BR

Hamming Loss |
emotions  0.260 0.250 0.254 0.211 0.246
scene 0.174 0.162 0.163 0.113 0.140
yeast 0.242  0.240 0.243 0.218 0.228
slashdot ~ 0.048 0.048 0.053 0.045 0.047
medical 0.010 0.010 0.011 0.010 0.011
tmc2007  0.081 0.068 0.072 0.056 0.061

Accuracy 1
emotions 0.481  0.492 0.479 0.567 0.436
scene 0.512  0.526 0.522 0.668 0.504
yeast 0.461 0.461 0.451 0.513 0.442

slashdot ~ 0.388  0.392 0.365 0.420 0.381
medical 0.738 0.743 0.707 0.745 0.741
tmc2007  0.528  0.572 0.541 0.612 0.598

Subset Accuracy 1
emotions  0.261  0.269 0.261 0.336 0.194
scene 0.472  0.500 0.496 0.639 0.421
yeast 0.160 0.149 0.155 0.202 0.080
slashdot ~ 0.190 0.191 0.177 0.198 0.183
medical 0.666 0.673 0.638 0.675 0.653
tmc2007  0.316 0.344 0.327 0.371 0.334

F-Measure 1
emotions  0.553  0.568 0.554 0.644 0.519
scene 0.532 0.535 0.531 0.678 0.533
yeast 0.568  0.570 0.557 0.618 0.560

slashdot ~ 0.455  0.460 0.429 0.499 0.447
medical 0.763  0.767 0.731 0.770 0.770
tmc2007  0.603  0.649 0.614 0.690 0.676

Micro F-Measure 1
emotions 0.591  0.600 0.587 0.670 0.579
scene 0.537  0.532 0.528 0.673 0.590
yeast 0.580  0.587 0.573 0.630 0.585
slashdot  0.517  0.522 0.492 0.574 0.514
medical 0.797  0.806 0.785 0.808 0.805
tmc2007  0.627 0.675 0.642 0.718 0.678

above the others (below for Hamming Loss) in many cases. BR seems to be the
closer contender, performing at the same level than RF sometimes.

The exact values are provided in Table 2. Best results have been highlighted
in bold. From these values, that RF is the best performer can be drawn. It
achieves the highest (lowest for Hamming Loss) value in all cases, with only a
pair of ties.

To better elucidate how each algorithm compare to others regarding classi-
fication performance, in Table3? all of them have been ranked. The rightmost
column shows the average ranking for all performance metrics. As can be seen,
the second best performer is C4.5, ahead of the BR transformation. By contrast,
CART gets the worst results.

3 Names of metrics have been abbreviated to better fit them as column captions.
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Table 3. Average ranking by metric

Algorithm | HL. | Acc |F-M |SA | MF-M | Avg. rank

RF 1.000 | 1.000 | 1.083 | 1.000 | 1.000 |1.017
C4.5 2.833 | 2.250 | 2.333 | 2.333 | 2.500 |2.450
BR 2.3334.000 | 3.250 | 4.333 | 3.167 | 3.417
ID3 4.333 | 3.583 | 3.833 | 3.500 | 3.667 |3.783

CART 4.500 | 4.167 | 4.500 | 3.833 | 4.667 | 4.333

4.3 Execution Time Analysis

The main goal of distributing the workload among a group of machines is to
reduce the total execution time taken by the process. In this case, the process is
the training of each classifier. The number of RDD partitions have been set to
different values, aiming to analyze at which extent increasing the parallelization
level decreases running time.

Since it has been already proven that ID3 and CART produce poor clas-
sification performance, time analysis will be focused in the other three MDT
implementations. Figure 2 shows execution times in seconds for each MLD and
method. The X axis is common to all plots, indicating the number of RDD parti-
tions. Y axes are independent, stating the running time in seconds. Experiments
taking longer than 10h were discarded, this is the reason to the lacking of data
points in tmc2007 for 1 and 2 partitions.

As would be expected, in general running time decreases as the number of
RDD partitions grows. However, there are a few exceptions such as RF while
trained with emotions, medical and yeast. In these cases increasing the number
of partitions from 32 to 64 implies a deterioration instead of an improvement,
taking significantly longer. This could be explained by the fact that the process
of dividing the problem and distributing it among the machines in the cluster,
takes longer than the savings obtained by sharing the workload.

4.4 Discussion

From the observation of the previous results, choosing the best MDT alternative
is a matter of deciding what is most important in each case, predictive perfor-
mance or running time. To obtain the best possible classification of new patterns
RF is the correct choice, with a large advantage over the other algorithms. RF
is an ensemble, a collection of C4.5 trees each of them generated from a random
subset of the features. Therefore, obtaining better results than a single C4.5
classifier is not strange. BR is also an ensemble, but each one of the trees is
focused in predicting one label only, working independently of the other trees.
The approach of creating several trees taking the relationship among labels into
account, through the LP transformation, proves to be superior.

As would be expected, the running times for the ensembles, BR and RF, are
longer than for the single C4.5 MDT. However, increasing the number of RDD
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Fig. 2. Execution time vs number of partitions

partitions reduces these times until they get quite close in some cases. As can
be observed in Fig. 2, BR is slower with the MDLs which have more labels, such
as tmc2007 and slashdot, since it has to produce a larger set of classifiers. On
the contrary, RF is more affected by the number of samples and attributes, as it
has to produce bigger trees as these numbers grow. In general, for MLDs with
many labels RF will produce the best classification results in less time than BR,
although depending on the number of RDD partitions some surpassing could
exists (as with the medical MLD). C4.5 running times are always the lowest,
but they only benefit from distributing the work among machines with the larger
MLDs. As can be stated from Fig. 2, for MLDs such as emotions, scene and yeast
the line for C4.5 is almost flat.

Overall, given its predictive performance and for being able to reduce running
time as the number of RDD partitions is increased, RF seems to be the best deci-
sion when it comes to choose a multilabel decision tree algorithm for big data
environments.
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5 Conclusions

The amount of new data patterns produced every day is huge, mainly in form
of images, videos, sounds and texts due to the emergence of services such as
Flickr, Instagram, YouTube! and personal blogs. These patterns are multilabel
in nature, and could be grouped/categorized/tagged into several classes. Hence
the interest in having methods able to perform multilabel classification with big
databases.

In this work five different decision tree based methods have been proposed.
Three of them are multilabel versions of well-known ID3, CART and C4.5 algo-
rithms, using an adapted entropy/Gini metric and based on the LP transfor-
mation. The other two, RF and BR, are ensembles of classifiers, following two
distinct approaches. The former trains several trees with a subset of the input
features and all labels, while the latter trains an individual tree for each label
with all the features.

A two-way experimental study has been conducted. The first part has led as
result that RF is the best choice when only predictive performance matters. The
second part analyzed how the total running time could be reduced by increasing
the number of RDD partitions. The behavior of RF and BR was dependent of
the MLD characteristics, noticeably the number of labels. As ensemble methods,
their running time was always higher than that of single-MDT classifiers such
as C4.5.

Acknowledgments. This work is partially supported by the Spanish Ministry of
Science and Technology under project TIN2015-68454-R.

References

1. Kotsiantis, S.: Supervised machine learning: a review of classification techniques.
In: Proceedings of Conference on Emerging Artificial Intelligence Applications in
Computer Engineering: Real World AT Systems with Applications in eHealth, HCI,
Information Retrieval and Pervasive Technologies, pp. 3-24. IOS Press (2007)

2. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.:
Random forest: a classification and regression tool for compound classification and
gsar modeling. J. Chem. Inf. Comput. Sci. 43(6), 1947-1958 (2003)

3. Wieczorkowska, A., Synak, P., Ra$, Z.: Multi-label classification of emotions in
music. In: Klopotek, M.A., Wierzchori, S.T., Trojanowski, K. (eds.) Intelligent
Information Processing and Web Mining. AISC, vol. 35, pp. 307-315. Springer,
Heidelberg (2006)

4. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recogn. 37(9), 1757-1771 (2004)

5. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: QUINTA: a question tagging
assistant to improve the answering ratio in electronic forums. In: Proceedings of
IEEE International Conference on Computer as a Tool, EUROCON 2015, pp. 1-6.
IEEE (2015)

6. Herrera, F., Charte, F., Rivera, A.J., Del Jesus, M.J.: Multilabel Classification:
Problem Analysis, Metrics and Techniques. Springer, Heidelberg (2016)



84

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A.J. Rivera Rivas et al.

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81-106 (1986)
Steinberg, D., Colla, P.: CART: Tree-Structured Non-Parametric Data Analysis.
Salford Systems, San Diego (1995)

Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993). ISBN 1-55860-238-0

Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders,
A W.M.: The challenge problem for automated detection of 101 semantic concepts
in multimedia. In: Proceedings of 14th ACM International Conference on Multi-
media, MULTIMEDIA 2006, pp. 421-430 (2006)

Srivastava, A.N., Zane-Ulman, B.: Discovering recurring anomalies in text reports
regarding complex space systems. In: Aerospace Conference, pp. 3853-3862. IEEE
(2005)

Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In:
Advances in Neural Information Processing Systems, vol. 14, pp. 681-687. MIT
Press (2001)

Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J.: Case studies and met-
rics. Multilabel Classification, pp. 33-63. Springer, Cham (2016). doi:10.1007/
978-3-319-41111-8_3

Charte, F., Charte, D.: Working with multilabel datasets in R: the mldr package.
R. J. 7(2), 149-162 (2015)

Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In:
Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42-53.
Springer, Heidelberg (2001). doi:10.1007/3-540-44794-6_4

Zhang, M.: Ml-rbf: RBF neural networks for multi-label learning. Neural Process.
Lett. 29, 61-74 (2009)

Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning.
Pattern Recogn. 40(7), 2038-2048 (2007)

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. HotCloud 10(10-10), 95 (2010)

Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1-10. IEEE (2010)

Gillick, D., Faria, A., DeNero, J.: Mapreduce: distributed computing for machine
learning, Berkley, 18 December 2006

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman,
J., Tsai, D., Amde, M., Owen, S., et al.: Mllib: machine learning in apache spark.
J. Mach. Learn. Res. 17(34), 1-7 (2016)

del Rio, S., Lépez, V., Benitez, J.M., Herrera, F.: On the use of mapreduce for
imbalanced big data using random forest. Inf. Sci. 285, 112137 (2014)

Charte, F., Charte, D., Rivera, A., de Jesus, M.J., Herrera, F.: R ultimate mul-
tilabel dataset repository. In: Martl’nez—Alvarez, F., Troncoso, A., Quintidn, H.,
Corchado, E. (eds.) HAIS 2016. LNCS (LNAI), vol. 9648, pp. 487—499. Springer,
Cham (2016). doi:10.1007/978-3-319-32034-2_41

Crammer, K., Dredze, M., Ganchev, K., Talukdar, P.P., Carroll, S.: Automatic code
assignment to medical text. In: Proceedings of Workshop on Biological, Transla-
tional, and Clinical Language Processing, BioNLP 2007, pp. 129-136. Association
for Computational Linguistics (2007)

Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85, 333-359 (2011)



