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The  production  of biofuels  is  a process  that  requires  the  adjustment  of  multiple  parameters.  Performing
experiments  in  which  these  parameters  are  changed  and  the  outputs  are  analyzed  is  imperative,  but  the
cost  of  these  tests  limits  their number.  For  this  reason,  it is important  to design  models  that  can  predict
the  different  outputs  with  changing  inputs,  reducing  the  number  of actual  experiments  to be completed.
Response  Surface  Methodology  (RSM)  is  one  of the  most  common  methods  for  this  task,  but  machine
eywords:
redictive models
ata mining
nzymatic hydrolisis
live tree biomass

learning  algorithms  represent  an  interesting  alternative.  In the  present  study  the  predictive  performance
of  multiple  models  built  from  the  same  problem  data  are  compared:  the  production  of  bioethanol  from
lignocellulosic  materials.  Four  machine  learning  algorithms,  including  two neural  networks,  a support
vector  machine  and  a fuzzy  system,  together  with  the  RSM method,  are  analyzed.  Results  show that
Reg-CO2RBFN,  the  method  designed  by the  authors,  improves  the results  of all  other  alternatives.

©  2017  Elsevier  Ltd. All  rights  reserved.
. Introduction

The production of bioethanol from lignocellulosic materials
LCM) such as agricultural, agroindustrial or other biomass residues
as been revealed as a promising alternative for partially substitut-

ng fossil fuels (Behera et al., 2014).
Pretreatment, enzymatic hydrolysis and fermentation are the

hree basic steps of the conversion scheme, which in summary con-
ists in the transformation of simple sugars contained in the LCM
nto ethanol. The main objective of the pretreatment is to break
own the lignocellulosic structure of the raw materials, resulting in
n improved access of enzymes to the sugar bonds. Next, the enzy-
atic hydrolysis itself will produce simple sugars (monomers, like

lucose, xylose and others) from their polymers (cellulose chains
nd hemicelluloses). Finally, the action of a fermenting microor-

anism will transform the monomers into ethanol, which will be
ater separated from the fermentation broth. The design and vali-
ation of accurate mathematical models, able to consider the main
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ttp://dx.doi.org/10.1016/j.compchemeng.2017.02.008
098-1354/© 2017 Elsevier Ltd. All rights reserved.
operational steps of the conversion process, is a key factor for tak-
ing full advantage of the use of renewable energy sources with that
purpose.

Several factors can affect the performance of the pretreat-
ment, including temperature, processing time, and the use of salts
(Ravindran and Jaiswal, 2016). As a general rule, severe pretreat-
ment conditions will result in an easy to hydrolyze pretreated solid,
but will also lead to higher material loss. A compromise selection of
operational conditions considering energetic requirements of pre-
treatment, recovery of pretreated material, and ease of hydrolysis
is necessary. The enzymatic hydrolysis of the resulting pretreated
materials can be used as a guide for condition selection.

To take account of the multiple variables or factors involved in
the pretreatment of LCM while keeping the experimental work
charge in a reasonable point, experimental designs are usually
applied. In experimental designs, all the factors are simultaneously
changed from one experiment to the other, in opposition to the
one-factor-at-a-time strategy, which can lead to a much higher
number of experiments (Bezerra et al., 2008). Once the experiments
are performed, a mathematical model is developed to relate the

experimental variables (or factors) with the dependent variable(s)
(or response). The response surface methodology (RSM), which is
the usual method applied in this field, consists in analyzing such a
relationship through a second degree polynomial.

dx.doi.org/10.1016/j.compchemeng.2017.02.008
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of this function usually is the Gaussian one (Equation (2))

�i(�x) = e−(‖�x− �ci‖/di)
2

(2)
4 F. Charte et al. / Computers and C

Data Mining (DM) can be considered as a central stage within the
ore general knowledge discovery process (Maimon and Rokach,

010). The objective of DM is to determine models that include
he relations among data and allow a better understanding, pre-
iction or generalization of these data. One of the most important
M tasks is regression, i.e. obtaining models with n independent
ariables and a continuous dependent variable. Successful applica-
ions of different DM methods for regression tasks can be found in
he bibliography. For instance, Artificial Neural Networks (ANNs)
re used in Cao et al. (2016) to model a desalination process or in
choa-Estopier et al. (2013) to optimize a distillation system. In
hao et al. (2016) a Support Vector Machine (SVM) is used to pre-
ict the viscosity of ionic liquids. Fuzzy systems are used in Wang
t al. (2016) to model the component concentrations in optical gas
ystems.

The objective of this work is to compare through RSM and
M regression methods the results obtained from the enzymatic
ydrolysis of pretreated olive tree biomass (OTB), an abundant,

ow cost and lacking of industrial application agricultural residue
f great importance in Mediterranean countries.

Among the main contributions in the present work the following
nes must be highlighted: First, the use of different DM meth-
ds, not only ANNs but also SVMs and Fuzzy Systems. One of the
NN methods (Reg-CO2RBFN) was developed and adapted by the
uthors for regression tasks. Second, to ensure the reliability of the
esults data are partitioned following the cross validation approach,
erforming 20 repetitions of the experiments on as many different
ata partitions. Third, to carry out a formal statistical analysis, a two
tage methodology was applied: firstly, the Friedman test (Sheskin,
006) is used to detect statistical differences among results. If so,
he second step consists in applying the Holm test (Holm, 1979),
hich is a post-hoc procedure aimed to concretize the significance

f these differences.
Some of the DM methods tested in the experimental sec-

ion, specifically ANNs such as Radial Basis Function Networks
RBFNs) or Multilayer Percentrons (Rojas, 1996) (MLPs), have
lready achieved successful results in prior experiments. The RBFNs
re designed with a cooperative-competitive methodology devel-
ped by the authors (Reg-CO2RBFN). Additionally, SVMs as NU-SVR
Fan et al., 2005) and Fuzzy Systems developed with Genetic Pro-
ramming as GFS-GAP-Sys (Sánchez and Couso, 2000) were tested.
s summary, Reg-CO2RBFN achieved the best results outperform-

ng with significant differences the remaining methods, including
SM which is the one most usually applied in the field.

. Materials and methods

.1. Pretreatment of materials

Fifteen pretreatment experiments with OTB were performed
ccording to a Box-Behnken experimental design fully described in
ópez-Linares et al. (2013). Briefly, operational conditions included
he duration (Time, min) and temperature (Temp, C) of the pretreat-

ent, and the concentration of FeCl3 (C, M).  The respective ranges of
hese factors were 0–30 min, 120–180 C, and 0.050–0.275 M.  Once
he pretreatment experiments were done, liquids and pretreated
olids were separated by filtration, and the content of glucose and
emicellulosic sugars in both fractions was determined. Further-
ore, the pretreated solids were further submitted to enzymatic

ydrolysis under standard conditions, and the enzymatic hydroly-
is yield for each experiment (grams of glucose in the hydrolysate

er gram of glucose in the pretreated material or in the original
aterial) was evaluated. Specifically the output variables obtained

re: recovery (%) of total solids (SR), glucose in pretreated solids
GRS), glucose in prehydroLisates (GRL), hemicellulosic sugars in
Fig. 1. RBFN topology for regression problems.

pretreated solids (HSRS), hemicellulosic sugars in prehydroLisates
(HSRL), enzymatic hydrolisis yields in raw material (YEH) and enzy-
matic hydrolisis yields in pretreated material (YWIS). The values for
these variables in the conducted experiments can be seen in Table 1.

2.2. The RSM model

Once factors (temperature, time and salt concentration) and
responses (solid recovery, glucose recovery in pretreated solids and
liquids, hemicellulosic sugar recovery in solids and liquids, and
enzymatic hydrolysis yields) were defined and the experiments
were performed, a polynomial equation relating each response
with the factors was  obtained, as follows:

Y = a0 + a1T + a2C + a3t + a4TC + a5Tt + a6Ct + a7T2

+ a8C2 + a9t2 (1)

where Y stands for each of the responses and the a-terms are to
be determined so that the experimental results are best adjusted
according to different statistical parameters such as the correlation
coefficient R2. The graphical representation of Eq. (1), when one of
the factors is set in a particular value, corresponds to a surface from
which the maximum or minimum can be obtained.

2.3. Machine learning methods

Four learning machine methods have been used to process the
collected data. The goal is to compare the performance of the usual
RSM model against other potential solutions. The selected methods
are: Reg-CO2RBFN, our developed method, MLP-BR (Rojas, 1996),
NU-SVR (Fan et al., 2005) and GFS-GAP-Sys1 (Sánchez and Couso,
2000). In this subsection the foundations of these machine learning
algorithms are briefly introduced.

2.3.1. The Reg-CO2RBFN method
Together with MLPs, RBFNs (Broomhead and Lowe, 1988) are

one of the most well known artificial neural network paradigm.
Among their characteristics highlight a simple topological structure
and universal approximation ability (Park and Sandberg, 1993).

The topology of an RBFN is composed by three feed-forward
connected layers: an input layer with n nodes (as many as inputs
there are), a hidden layer with m neurons or RBFs, and an output
layer with one node for regression problems (see Fig. 1).

The activation function of the neurons or RBFs in the hidden
layer is a radially-symmetric basis function, � : R

n → R. The shape
1 These are the methods’ names in the KEEL software package (Alcalá-Fdez et al.,
2011), whose implementation has been used in this study.
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Table  1
Values from the OTB pretreatment experiments.

Input variables Output variables

n Time Temp FeCl3 GRL GRS HSRS HSRL SR YEH YWIS

1 30 120 0.125 32.48 51.14 22.68 60.63 60.16 10.14 19.71
2  0 140 0.050 29.67 61.92 55.22 28.46 71.36 12.23 19.92
3  15 160 0.050 35.73 56.54 15.20 73.34 56.28 19.57 34.61
4  0 140 0.200 35.01 59.50 17.52 67.98 57.74 11.66 19.43
5  30 140 0.200 35.31 49.25 0.33 82.20 49.21 19.67 39.94
6  15 140 0.125 33.01 63.10 12.38 71.69 54.46 14.62 23.17
7  15 140 0.125 32.66 55.22 13.02 73.49 55.05 15.1 27.34
8  30 160 0.125 33.14 50.30 0.00 62.70 48.37 28.07 55.80
9  15 120 0.050 27.45 62.87 66.65 28.46 73.83 11.85 18.85
10  30 140 0.050 31.00 55.92 37.56 44.96 63.07 11.08 19.81
11  15 120 0.200 32.31 59.86 20.34 72.15 57.38 8.76 14.63
12  0 160 0.125 37.35 55.81 5.60 81.02 53.96 18.80 33.69
13  15 140 0.125 33.55 54.86 13.07 70.14 55.48 14.10 25.70
14  15 160 0.200 32.01 48.32 0.00 50.35 46.51 36.50 75.54
15  0 120 0.125 27.39 62.87 64.00 31.17 70.83 12.62 20.07
16  0 180 0.200 21.88 27.46 0.00 15.38 42.26 25.58 93.16
17  0 160 0.275 28.16 50.09 0.00 28.84 44.27 28.73 66.87
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18  30 180 0.200 28.15 21
19  30 160 0.275 41.24 43
20  30 180 0.275 18.45 11

here �ci ∈ R
n is the center of basis function �i, di ∈ R  is the radius

r width, and ‖‖ is typically the Euclidean norm on R
n.

The output neuron calculates the sum of all RBF outputs pon-
ered by the corresponding weights, wi, see Equation (3)

 (�x) =
m∑

i=1

wi�i(�x) (3)

The authors have developed an hybrid evolutionary
ooperative-competitive methodology for the design of RBFNs,
O2RBFN (Pérez-Godoy et al., 2010) for classification tasks. Now, in
his paper, a new adapted version for regression problems, named
eg-CO2RBFN, is proposed.

In Reg-CO2RBFN, an individual of the population represents an
BF and the entire population the solution to the problem. The qual-

ty or credit assignment of an individual is measured with three
arameters: the RBF weight to the network output, ai, the error into
he basis function radius, ei, and the overlapping, oi, with remaining
BFs. Specifically for each RBF, these parameters are defined as:

The contribution, ai, of the RBF �i, i = 1 . . . m,  is established to the
weight of the RBF.
The error measure, ei, for each RBF �i, is obtained calculating
the RMSE (Root Mean Square Error) (Equation (5)) error of the
patterns inside its radius.
The overlapping of the RBF �i and the other RBFs is quantified by
using the parameter oi. This factor is expressed as:

oi =
m∑

j=1

oij oij =

{
(1 − ‖�i − �j‖/di) if ‖�i − �j‖ < di

0 otherwise

(4)

where oij measures the overlapping of the RBF �i y �j j = 1 . . . m.
As part of the evolutionary environment four operators can be
pplied to the individuals: removing, random mutation, biased
utation and no operation. These operators are applied in func-

ion of a Fuzzy Rule-Based System (FRBS), where the inputs are
he three parameters defined for credit assignment and the out-
uts are the probability of applying the operators. The main steps
f Reg-CO2RBFN are shown in Algorithm 1 in pseudocode.
1.85 7.13 40.66 20.17 93.55
0.00 40.57 45.16 38.85 88.71
0.00 2.44 41.34 11.36 96.15

Algorithm 1. Reg-CO2RBFN pseudo-code.

2.3.2. Symbolic regression through evolutionary techniques
GAs (Genetic Algorithms) and GP (Genetic Programming)

(Affenzeller, 2009) are a family of optimization techniques based
on evolutionary principles. In a GA each potential solution to the
faced problem is described as an individual, whose genotype (a
fixed-length string of binary or real values) encodes the solution
parameters. The genotypes of the population are changed over time
through cross-over and mutation operators, and a fitness evalua-
tion selects the best adapted individuals through a tournament.
After a certain number of generations the best solution, or a set
of best solutions, is retrieved. GP is similar to GA in the way  the
solutions are evolved, but the representation of the individuals is
completely different. A symbolic description of the solution, usu-
ally in the form of a tree, along with a certain set of restrictions
that guarantee its validity, is used instead of a fixed-length string
of symbols. This way, GP can be used to search for computer pro-
grams, arithmetic expressions or any other symbolic portrayal that
solves the problem at glance.

GA-P (Howard and D’Angelo, Exper) is an evolutionary method
able to face symbolic regression tasks. To do so, it combines GAs
and GP techniques. The GA part is in charge of optimization, while
the evolution of mathematical expressions relies on GP. GA-P’s goal
is to find data relationships which help to solve regression in a
symbolic fashion. The GFS-GAP-Sys algorithm proposed in Sánchez
and Couso (2000) is based on GA-P, but adapted to work with
fuzzy data (Harris, 1989). The result is a fuzzy arithmetic-based
model capable of extracting useful symbolic relations among inputs
and outputs. GFS-GAP-Sys proved to be competitive against other
methods, including artificial neural networks, in facing tasks such
as the discovery of empirical laws from sets of data samples.
The most important configuration parameters for this algorithm
are the population size, number of subpopulations (islands), the
tournament size (number of individuals involved in the tourna-
ment), and the probability of a mutation being applied.
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Table 2
Parameter specification for the algorithms employed in the experimentation.

Algorithm Parameter Value

Reg-CO2RBFN Generations of the main loop 100
Number of RBFs 8

FUZZY-GAP Population size 30
Number of islands 2
Steady 1
Number of iterations 1000
Tournament size 4
Probability of mutation 0.01

MLP-BP Hidden nodes 8
Transfer Htan
Eta 0.15
Alpha 0.10
Lambda 0.0

NU-SVM KERNELtype POLY
C  100.0
Eps 0.001
Degree 1
6 F. Charte et al. / Computers and C

.3.3. Multi-layer perceptron regression
MLP  (multi-layer perceptron)  is the best-known ANN model, and

t is probably the most used one since the algorithm which allows
o train it was introduced in Rumelhart et al. (1985). Unlike RBFNs,
n MLP  can have more than one layer of hidden units. Once a data
attern has been given as input, the activation function inside each
nit is computed, and its output is forwarded to the next layer until
eaching the output layer, where the predicted value is reported.
uring training the MLP, this predicted value is compared with the
round truth value, and the committed error is used to adjust the
eights connecting the units in each layer. The error is minimized

n each trip of values through the MLP  layers. After presenting
he input data several times to the algorithm, the MLP  eventually
eaches an equilibrium state. It has learned how to predict the cor-
ect output values from each set of inputs. MLPs are mostly applied
o classification problems.

MLPs are universal estimators for continuous and bounded func-
ions, so they can solve regression problems in a natural way. Its
obustness and stability against the traditional statistical approach,
.e. linear regression, have been demonstrated (Gaudart et al., 2004).
n classification tasks, a sigmoid activation function translates the
ontinuous output into a categorical value, the class label. MLP-BR
Rojas, 1996), the algorithm used in our experiments, is essentially

 multi-layer perceptron (MLP) designed to produce a continuous
utput as prediction, instead of a class label identifier.

The most important configuration parameters for this algorithm
re the number of hidden nodes, the transfer function used by the
eurons, the � and  ̨ values for the momentum term, and the �
alue for the decay term.

.3.4. Support vector machine regression
SVMs (support vector machines) (Boser et al., 30401) were orig-

nally applied to pattern recognition tasks. The input pattern
eatures, lying in a n-dimensional space and which are non-linear
eparable, are projected into a larger space by means of a kernel
unction, achieving linear separability. The algorithm, through the
esolution of a quadratic optimization problem, finds the maximum
eparation margin between pattern categories. Those patterns
ocated in the frontier of two classes, helping to generate the separa-
ion boundary, are the support vectors. The traditional SVM method
as a C parameter that is hard to optimize, since it is not bounded.
he NU-SVM algorithm (Schölkopf et al., 2000) replaces the C
arameter introducing a new one, called NU, which is bounded and
as a straightforward interpretation, thus being easier to adjust.

SVMs can be seen as an universal tool (Vapnik et al., 1996)
or solving any multidimensional function estimation, including
egression approximation problems. The standard SVM method has

 major drawback, the training process is quite expensive, since it
mplies solving a large quadratic optimization problem. NU-SVR
Fan et al., 2005) is a regression SVM based on the SMO  (Sequen-
ial Minimal Optimization) (Platt, 1998) algorithm, reported to be
rders of magnitude more efficient than the traditional learning
lgorithm.

The most important configuration parameters for this algorithm
re the kernel type used to project the source space and some values
elated to that kernel function, such as the degree and coefficients
f the polynomial.

. Results and discussion

.1. Experimental framework
The implementation of the data mining methods: FUZZY-GAP,
LP-BP and NU-SVM, has been obtained from KEEL (Alcalá-Fdez

t al., 2011). The values of the parameters are set to the default
Gamma 0.01
Coef0 0.0

ones. Since these three DM methods are not deterministic, three
independent runs have been executed and average values have
been gathered. The main parameters used for the algorithms are
shown in Table 2.

For each output variable of the hydrolysis process, one model is
determined for every regression or data mining method.

Two evaluation metrics have been computed to assess the meth-
ods performance. The first one is RMSE (root mean square error) (Eq.
(5)), where n is the number of instances, ft is the output of the model
and yt is the real output for the tth instance respectively.

RMSE =
√∑n

t=1(ft − yt)
2

n
(5)

Another way to measure the quality of the calculated model
from the training data is the coefficient of determination, R2, that
obtains the fit between the predicted and the real data (Eq. (6)).

R2 =
(

cov(f, y)
�f �y

)2

(6)

where cov(f, y) represents the covariance between the model out-
put and the real output, and �f and �y are the standard deviation
of model output and the real output, respectively.

3.2. Data partitioning configuration

Most statistical procedures aimed to generate a prediction
model, including RSM, are usually conducted in the same way. The
parameters of a certain model are adjusted utilizing all the available
data patterns. Then, the goodness of the model is assessed through
some statistical indicators, such as R2, over the same data. Com-
monly, the performance of the model against new data samples,
never seen during the model generation process, is not evaluated
a priori. This is a scenario quite different to that followed in the
machine learning field, where the training of the model is done
with only a subset of the available patterns, while the performance
is assessed using a different subset. The goal is to test the general-
ization capability of the model, determining if it is able to produce
a good solution even when data not seen before is given as input.
The way  the patterns are partitioned into training and test sub-
sets mostly depends on the amount of available data. There are
three frequent approaches to follow:
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Table  3
Results obtained from training data sets.

Data base RSM Reg-CO2RBFN FUZZY-GAP MLP-BP NU-SVM

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

GRL 0.7703 2.4133 0.8160 2.1418 0.0367 5.1966 0.0707 5.1249 0.0911 5.3366
GRS  0.9582 2.8064 0.9569 2.8321 0.5229 16.6859 0.6265 15.5074 0.7095 7.7735
HSRL  0.9024 7.7080 0.9591 4.8921 0.0933 26.4176 0.2515 23.2634 0.1549 22.7853
HSRS  0.9715 3.5590 0.9854 2.5153 0.3703 21.0612 0.6304 20.9095 0.5294 16.2654

.5464

.3187
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obtain similar shapes, fixing Temp to 150. The maximum value for
the variable, around 66, is achieved when Time is 0 and FeCl3 is
0.05 and the minimum around 53 when Time is 0 and FeCl3 is

Table 4
Results obtained from test data sets (RMSE).

Data base RSM Reg-CO2RBFN FUZZY-GAP MLP-BP NU-SVM

GRL 5.5197 4.6436 4.0923 4.8251 4.8628
GRS  5.4755 6.2263 11.1294 15.1152 7.1436
HSRL 17.4745 12.5074 26.2649 21.9661 21.1395
SR  0.9909 0.9235 0.9920 0.8540 0
YEH  0.5472 5.7645 0.8846 2.8440 0
YWIS  0.9390 7.1809 0.9919 2.5868 0

If a large amount of data is available, a random subset of patterns,
usually between 50% and 70%, is used to train the model, while
the remainder ones serve to evaluate it. This is commonly known
as hold-out validation.
When the number of patterns at disposal is not so large, the com-
mon  approach is to perform a 5 or 10 folds cross validation. This
consists in repeating the training/testing process 5 (10) times,
using the 80% (90%) of data to build the model and the remain-
der 20% (10%) for testing it. The average of all iterations is given
as final performance result, thus avoiding the potential bias that
could be introduced by using hold-out.
Sometimes the process to acquire new data patterns can be very
difficult or expensive, resulting in that only a few of them are
available. In order to increase the fairness on assessing the model,
leave one out validation is usually applied in these cases. Leave
one out is like cross validation using as many folds as samples
there are in the data set. All but one pattern are used to build
the model, while the remainder sample serves to compute the
evaluation metric. The individual scores are eventually averaged,
as in cross validation.

Since only 20 patterns have been used in this experimenta-
ion, the leave one out validation approach has been followed. This

eans that 20 models haven been generated and evaluated, each
ne of them using 19 patterns for training and the remainder one
or testing. The reported performance indicators are average values
rom these 20 runs.

.3. Obtained results

In Table 3 the results obtained with the training data sets are
hown. For each method, the RMSE and the R2 coefficient are cal-
ulated. Best results are in bold, the lowest value for RMSE and the
ighest for R2.

As preliminary conclusion, in six out of seven variables Reg-
O2RBFN outperforms the remaining methods both in RMSE error
nd R2 coefficient. The RSM method achieves one best result for
he GRS output variable, closely followed by Reg-CO2RBFN. RSM
btains the second best result for five data sets, sometimes with
esults close to the best one, as in GRL or SR. In any case, it is
emarkable that RSM achieves a low R2 for GRL an YEH.

The other DM methods show mixed results for training data sets.
eginning with RMSE they obtain competitive results for GRL or
EH, even MLP-BP reaches the second best position for YEH. How-
ver, these DM methods show high RMSE values for the remaining
ata sets. Regarding the R2 coefficients, it is difficult to find values
lose or higher than 0.9, only MLP-BP for SR or YWIS reaches this
oal. NU-SVM obtain their best R2 results, between 0.7 and 0.77,
or GRS, SR and YWIS and poor values, below 0.16, for GRL, HSRL
nd YEH. The worst R2 values are obtained by FUZZY-GAP with a

aximum of 0.5464 and a minimum of 0.0367.
As mentioned, a relevant stage in this type of experiments is

o test the models with unseen patterns or instances. The RMSE
btained by the models from the tests data sets is shown in Table 4,
 17.0043 0.8627 4.0347 0.7097 5.4324
 7.8034 0.6807 5.4435 0.1067 9.6082
 24.3770 0.9072 10.7019 0.7784 13.8560

best results are in bold. The R2 coefficient cannot be calculated
for test data, as the leave one out methodology is used for data
partitioning and test data sets are composed of only one instance.

For the test data sets, it must be highlighted that Reg-CO2RBFN
outperforms the other methods in five out of the seven variables:
HSRL, HSRS, SR, YEH and YWIS. For GRL, FUZZY-GAP obtains one
best result and Reg-CO2RBFN the second best result. For GRS, RSM
achieves the best result and Reg-CO2RBFN the second one. RSM
sometimes reaches second best result, but for GRL and YEH it
appears as the worst performing method. In general, the remaining
data mining methods have improved their accuracy, as mentioned
for GRL and YEH, but for certain data sets, such as HSRL or HSRS,
obtain poor results.

3.4. Graphical analysis of the results

With the aim of carrying out a graphical analysis of the results,
Figs. 2 and 3 show the output surface of four output variables (HSRL,
SR, YEH and YWIS) corresponding to the models produced by Reg-
CO2RBFN and RSM, specifically for the first data partition. As we
have three input variables, it is necessary to set one to a fixed
value, representing the graphics the variations of the remaining
two input variables. To achieve a better representation the fixed
value is established to the central point of the range of the input
variable.

This analysis starts with the models obtained for the HSRL vari-
able (upper half in Fig. 2). If the shapes of these models are studied it
can be concluded that Reg-CO2RBFN can reach more complex con-
tours. These contours are the results of the independent placement
of gaussian function. On the other hand, RSM shapes come from
second degree polynomials and may  not always fit with precision
any shape. If we  observe the values achieved by the model, also we
can conclude that Reg-CO2RBFN reproduce the training data more
accurately. For this figure, FeCl3 is fixed to 0.125. In this way as in
the real values showed in Table 1, the model shows values around
80 when Time is 0, Temp is 160 and FeCl3 is 0.125, or around 60 in
the opposite when Time is 30. On the other hand, the values for the
RSM model range around 60 for these examples.

For the SR output variable (lower half in Fig. 2) both models
HSRS 8.4328 6.7960 17.2009 18.6207 15.8235
SR  2.1124 1.7823 14.7954 4.2699 5.1285
YEH 12.1285 6.5544 7.0571 7.1525 9.3898
YWIS 15.1255 7.1723 21.2421 9.8838 12.4383
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Fig. 2. Comparison among surfaces produced by Reg-CO

.25. Nevertheless, Reg-CO2RBFN shows more adaptive contours
hat RSM.

For the YWIS output (lower half in Fig. 3) the models obtained by
eg-CO2RBFN and RSM are similar. For this figure the input variable
ime was fixed to 15. As can be seen the value of YWIS reaches a
alue of 20 when Temp is set to 120 regardless of the value of FeCl3.
he maximum value is achieved when Temp is about 180 and FeCl3
s 0.275. In any case the adaptive capacity of Reg-CO2RBFN can be
een in the shapes this of model.

The models obtained by RSM and Reg-CO2RBFN for YEH are the
nes in the upper half of Fig. 3. While the RSM model shows a more
niform shape, Reg-CO2RBFN model seems to fit better the training
ata. Taking into account that Time is fixed to 15 and analyzing
aximum and values, it can be observed that when Temp is 120

nd FeCl3 is 0.05 Reg-CO2RBFN returns a value around 12, similar to
he corresponding training data, however, for these inputs the RSM

odel returns a value around 5. On the other hand, maximum real
alues, around 36, for YEH are observable in Reg-CO2RBFN model
hen Temp is 160 and FeCl3 is 0.2 Reg-CO2RBFN, returning RSM
odel around 25 for these inputs.
.5. Statistical analysis of the results

To achieve a more formal analysis of the results (statistically
upported), hypothesis testing techniques (García et al., 2010;
N (left) and RSM (right) models, HSRL and SR variables.

Sheskin, 2006) are used. In this field we have two options: para-
metric or nonparametric tests. To apply parametric test some data
conditions, such as independency, normality and homocedasticity
must be fulfilled. As these conditions are not guaranteed (Demšar,
2006), nonparametric tests haven been applied.

According to García et al. (2010), the first step is to detect statisti-
cal differences among a group of results, for example from methods
applied to a given data set. For this goal, Friedman test (Sheskin,
2006) is used. This test establishes as null hypothesis that similar
results, without significant differences, have been obtained by the
methods. If the null hypothesis is rejected, the second step consists
of applying a post-hoc test in order to determine the methods with
significant differences with respect to the control algorithm or the
algorithm with the best results. As post-hoc procedure, the Holm
test (Holm, 1979) is used. For these tests, a p-value value associ-
ated with the validity of the null hypothesis is calculated. A p-value
ranges from 0 to 1. When it is below a certain threshold ˛, it implies
that a significant difference exists. Usually  ̨ is set to 0.05, which
means that results are given with a 95% confidence level. Finally, as
a general rule, this methodology is applied to the results obtained
from the test data sets.
Firstly the Friedman test is applied. This test computes a rank-
ing of the algorithms in the following way. For each data set the
algorithms are classified with respect to its accuracy position, i.e.,
to the algorithm with the best accuracy the value 1 is assigned, to
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Fig. 3. Comparison among surfaces produced by Reg-CO2RBFN (left) and RSM (right) models, YEH and YWIS variables.

Table 5
Average rankings of the algorithms (Friedman test).

Algorithm Ranking

Reg-CO2RBFN 1.2857
RSM 3.0000
FUZZY-GAP 3.7143

t
a
s

d
A
f

s
c
s

Table 6
Holm test.

i Algorithm pHolm

1 FUZZY-GAP 0.016237
2  MLP-BP 0.020523

in the this table.
MLP-BP 3.5714
SVM 3.4286

he algorithm with the second best accuracy the value 2 is assigned
nd so on. The final rank is the average of these ranking per data
et.

Table 5 shows the average rankings of the algorithms for the test
ata sets. A lower value in the ranking represents a better algorithm.
s can be seen Reg-CO2RBFN is the best algorithm in the ranking,

ollowed by the classical RSM methodology.
The Friedman statistic, distributed in accordance with a chi-
quare with 4 degrees of freedom, is 11.0857 and the p-value
omputed by Friedman Test is 0.0256. This value below 0.05 implies
ignificant differences between the algorithms.
3  SVM 0.022460
4  RSM 0.042522

As the existence of significant differences are demonstrated the
Holm test, a multiple comparison post-hoc procedure, is applied.
The objective is to determine which are the methods that present
statistical differences with respect to the best method, called con-
trol algorithm. The results of the Holm test are shown in Table 6.
Reg-CO2RBFN is the control algorithm (not appearing in the table)
and the rest of methods are sorted by its p-value. The null hypothe-
sis or the limit to establish significant differences (p-value) is shown
As can be observed, all p-values are well below the usual  ̨ = 0.05
value, therefore it can be affirmed that Reg-CO2RBFN outperforms
with significant differences the remaining methods. For a wider
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escription on the use of these tests, please refer to (Demšar, 2006;
arcía et al., 2010).

. Conclusions

In this paper the RSM method and different DM methods were
ested to model the enzymatic hydrolysis process of OTB. The DM

ethods applied were Reg-CO2RBFN, an RBFN design technique
eveloped by the authors, an MLP, an SVM and a Fuzzy System. To
uarantee the reliability of obtained results, a cross validation pro-
edure is used and non-parametric statistical techniques supported
he analysis carried out.

A first conclusion is that Reg-CO2RBFN outperforms with sta-
istical significant differences the remaining methods. The second
est method is RSM. The other DM methods have obtained results
ith different accuracy, that is in large part attributable to the low
umber of available data patterns.

From the graphical analysis of the obtained models, we can
onclude that Reg-CO2RBFN models fit the data better than RSM
odels, accurately reproducing the training data. This is due to dif-

erent capacity of the shapes generated from RSM methods, based
n second degree polynomials, and from Reg-CO2RBFN methods
ased on free placement of gaussian functions.

Further works will be focused on the use of this model under
ifferent operational conditions and pretreatment methods.
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