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Abstract. Multilabel classification (MLC) is an increasingly widespread
data mining technique. Its goal is to categorize patterns in several non-
exclusive groups, and it is applied in fields such as news categorization,
image labeling and music classification. Comparatively speaking, MLC
is a more complex task than multiclass and binary classification, since
the classifier must learn the presence of various outputs at once from the
same set of predictive variables. The own nature of the data the classifier
has to deal with implies a certain complexity degree. How to measure
this complexness level strictly from the data characteristics would be an
interesting objective. At the same time, the strategy used to partition
the data also influences the sample patterns the algorithm has at its dis-
posal to train the classifier. In MLC random sampling is commonly used
to accomplish this task.

This paper introduces TCS (Theoretical Complexity Score), a new
characterization metric aimed to assess the intrinsic complexity of a mul-
tilabel dataset, as well as a novel stratified sampling method specifically
designed to fit the traits of multilabeled data. A detailed description of
both proposals is provided, along with empirical results of their suitabil-
ity for their respective duties.

Keywords: Multilabel classification · Complexity · Metrics ·
Partitioning

1 Introduction

Unlike multiclass and binary classification, where the classifier has to predict only
one output, multilabel classification (MLC) must learn the associations between
the patterns’ features and several outputs at once. Each output indicates if a
certain label is relevant to the data sample or not, thus the algorithms have
to work with a set of binary predictions. Nowadays MLC is being applied to
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automate tag suggestion [1], categorize text documents [2], label incoming images
[3], etc. A introduction to MLC and a recent review on MLC techniques and
related topics can be found in [4,5], respectively.

Most of the aforementioned tasks involve working with large multilabel
datasets (MLDs) having disparate numbers of input features, instances, labels,
combinations of labels, etc. Undoubtedly some of these traits, such as the num-
ber of instances, determine at some extent the time necessary to train a classifier.
Beyond this fact, it would be desirable to know in advance the difficulties a certain
MLD can present and how its complexity can affect the classifier performance.

A second circumstance which potentially affects MLC algorithms perfor-
mance is the way MLDs have been partitioned. There are MLDs containing
only a few samples, sometimes only one, as representatives of rare labels. Ran-
dom sampling, which is the mainstream strategy used in the multilabel field,
can throw these few samples all on either the training or the test partition. Both
cases will probably decrease the performance of the classifier.

The main aim of this paper is to study how the complexity of MLDs and the
sampling strategy impacts classification results. For doing so, two proposals are
introduced:

– A new characterization metric, called TCS (Theoretical Complexity Score),
will allow to know the complexity of an MLD in advance, prior to use it to
train a classifier. It is computed from the basic MLD traits.

– A novel stratified sampling method for partitioning datasets, aiming to
improve label distribution among training and test partitions, thus providing
the classifier a fairer representation of each label. It is built upon an stratifi-
cation strategy, grouping instances containing labels with similar frequencies.

This paper is structured as follows. Section 2 explains how different com-
plexity factors influence classification results and introduces the TCS metric.
In Sect. 3 the problems of random sampling are described, and a new stratified
sampling method is presented. The suitability of these two proposals is experi-
mentally tested in Sect. 4. Lastly, in Sect. 5 some conclusions are drawn.

2 Assessing a Multilabel Dataset Complexity

Data complexity [6] is an intensively studied aspect in different fields, including
classification. How to measure it and its influence in specific problems, such
as imbalanced [7] learning and noise filtering [8], have been already faced in
traditional classification. Regarding MLC, some studies related to imbalance
[9] measurement and other complexity facts, such as the concurrence among
frequent and infrequent labels [10], have been also published.

The interest here is to determine an intrinsic and easily interpretable com-
plexity metric for MLDs. In this context, complexity has to be understood as the
set of traits of the MLD that will make the learned model both more ineffective
and inefficient.
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2.1 Factors Influencing the Complexity of MLDs

In order to design such a metric firstly the main traits of any MLD and its
implications in learning a MLC model have to be analyzed. The considered
factors are the following:

– Number of data instances: The number of rows in an MLD determine the
amount of available patterns to train and then test any model. While it is true
that a larger quantity of data samples also implies more time devoted to train-
ing, having more instances does not necessarily means that the resulting model
will be more complex. In fact, training a classifier with enough representative
patterns is usually associated to a better performance.

– Number of input features: In machine learning the curse of dimensionality
[11] is a very well-known problem. As the number of input features growths,
so does the dimensions of the space where the patterns are located. Working
in a high-dimensional space makes more difficult tasks such as measuring
distances among patterns and finding analytical solutions. Most MLDs have
a large number of features, thus it is a factor to be taken into account.

– Number of labels: In traditional classification the algorithms only have
one output to learn, whether it is binary or multiclass. By contrast, MLDs
have hundreds or thousands of labels. The larger is the number of labels the
more complex would be the model to generate. There are many MLC methods
based on binarization techniques [12–15], and the number of labels has a direct
impact in both the time used to train each binary classifier and the complexity
of the overall algorithm. This, no doubt, is another factor to consider.

– Number of labelsets: The labels in an MLD appear producing different
combinations, usually known as labelsets. The number of distinct labelsets is
another aspect to bear in mind, since there are many MLC methods [16–19]
based on training multiclass classifiers using the labelsets as class identifiers.
Some of them produce simpler subsets of labels through pruning, random
combinations and clustering approaches. In general, the larger is the amount
of different combinations the more complex will be the final solution.

2.2 Theoretical Complexity Score

Building on the premises just enumerated, the proposed TCS metric is computed
as indicated in (1). Let f be the number of input features, k the number of labels
and ls the number of distinct labelsets. The logarithm of the product of these
three factors will provide a theoretical complexity score, based only on the basic
traits of the MLD1 and easier to interpret than the raw product.

TCS(D) = log(f × k × ls) (1)

1 In practice there would be other factors also influencing the classifiers performance,
such as data sparseness, imbalance levels, concurrence among rare and frequent
labels, etc.
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The main goals in defining this metric, in addition to assess the complexity
of an MLD, were ease of computation and interpretation, providing a straight-
forward measurement.

If there were an extremely simple MLD, having only one input attribute, two
labels (on the contrary it would not be multilabel), and four different labelsets
(the number of combinations two labels can produce), its TCS value would be
log(1 × 2 × 4) ≈ 2. Table 1 shows the number of attributes, labels, labelsets and
TCS for twenty MLDs commonly used on the literature, ordered according to
their TCS value. As can be seen emotions and scene, two of the most popular
MLDs, are the simplest ones. The two MLDs from genetics/proteins field, gen-
base and yeast, are more complex. Multimedia datasets, such as mediamill and
corel5k, are located at the middle of the table. Some of the MLDs coming from
text media, such as delicious, bookmarks, EURLex, etc., appear as the most
complex ones.

Table 1. MLDs ordered according to their theoretical complexity score

Dataset TCS Attributes Labels Labelsets

emotions 9.364 72 6 27

scene 10.183 294 6 15

yeast 12.562 103 14 198

genbase 13.840 1 186 27 32

cal500 15.597 68 174 502

medical 15.629 1 449 45 94

enron 17.503 1 001 53 753

reuters 17.548 500 103 811

mediamill 18.191 120 101 6 555

corel16k001 19.722 500 153 4 803

corel5k 20.200 499 374 3 175

stackex-cs 20.532 635 274 4 749

bibtex 20.541 1 836 159 2 856

tmc2007 21.093 49 060 22 1 341

eurlex-sm 21.646 5 000 201 2 504

eurlex-dc 21.925 5 000 412 1 615

rcv1subset1 22.313 47 236 101 1 028

delicious 22.773 500 983 15 806

bookmarks 22.848 2 150 208 18 716

eurlex-ev 26.519 5 000 3 993 16 467
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3 Sampling Multilabel Datasets

Almost all studies and proposals in the multilabel field imply some classifica-
tion experimentation. Hold out, 2× 5 and 10 folds cross validation are among
the most common schemes, always with the same strategy to chose the pat-
terns included in train and test partitions, random sampling. Despite the fact
that some other sampling strategies [20] have been described for some time, the
random approach is still the most used option.

Random sampling does a good work in selecting training and test patterns
when most labels have enough representation in the MLD. However, sometimes
it could be a risky strategy. That some labels have only one or two patterns
representing them in the MLD is quite usual. Random sampling can place all
of them either in the training or the test partition. To avoid this problem a
stratified sampling approach can be used.

3.1 Stratified Sampling of MLDs

Stratified sampling is a usual technique in cross validation [21] for traditional
classification. Since only one class is assigned to each instance, it is possible
to compute the distribution of each class in the whole dataset and then draw
the equivalent proportion of samples for training and testing. On the contrary,
samples in an MLD are associated to several labels at once. If one instance is
chosen for the train partition because it holds a certain label, it must be taken
into account that some other labels are also included in the operation since they
jointly appear with the selected one.

In [20] a stratified iterative method for sampling MLDs is proposed. It goes
label by label through the MLDs, choosing individual samples and updating a set
of counters. Due to its iterative nature it is a slow method when compared with
random sampling, specially with MLDs having thousands of labels. Nonetheless,
the authors stated that it was able to improve the classifier performance while
dealing with some MLDs.

3.2 Stratified Random Sampling Method

The method outlined in Algorithm1 is a new proposal to partition MLDs. It
follows a stratified random sampling approach, but unlike the one in [20] it is
not iterative by label.

In line 3 a weight is computed for each instance in the MLD. It is obtained
as the product of the relative frequencies of active labels in the data sample. If
one or more rare labels appear in it, the score will be very low. On the contrary,
the occurrence of one or more common labels will produce a higher value. The
number of active labels also influences this score. The larger is the set of labels
in the instance the lower will be the score. The goal is to group instances with
a similar label distribution relying in a simple procedure.

Once the instances have been ordered according to their weight (line 5), they
are divided into as many strata as folds have been requested. Each training
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Algorithm 1. Partitioning method based on stratified random sampling

1: function stratified.kfolds(MLD D, Integer nfolds)
2: for each instance i in D do
3: Diw ←∏ freq(l ∈ Di) � Weight for each instance
4: end for
5: D ← SortBy(Dw) � Sort instances according to their weight
6: � Group samples with similar weight in separate strata
7: for i = 1 to nfolds do
8: stratai ← D|D|/nfolds∗(i−1) − D|D|/nfolds∗i
9: end for

10: for i = 1 to nfolds do � Generate nfolds folds
11: for j = 1 to nfolds do � Taking part of the samples in each stratum
12: trainfoldi ⇔ drawRandomly(strataj , |D|/nfolds × (nfolds − 1))
13: testfoldi ⇔ strataj − trainfoldj � Remainder samples in stratum
14: end for
15: end for
16: return (trainfold, testfold)
17: end function

partition gets a portion of each stratum proportional to the number of samples
in D and the number of folds. The remainder samples in the stratum are given
to the test partition. The samples in each stratum are randomly picked.

4 Experimentation

Aiming to validate the usefulness of the two proposals made in the previous
sections, five MLDs with diverse TCS values have been selected from Table 1.
Those are emotions, yeast, enron, stackex-cs and delicious. All of them can be
downloaded from the R Ultimate Multilabel Dataset Repository [22], and they
can be partitioned randomly or using the stratified strategy described in Sect. 3
by means of the mldr.datasets2 R package.

The datasets were partitioned using 10 fcv, once randomly and once with
stratified random sampling. These partitions were given as input to tree multil-
abel classifiers, one based on binarization (BR [12]), one based on label combina-
tions (LP [16]), and one on lazy learning adapted to multilabel data (ML-kNN
[23]). From the results produced by the classifiers three general performance
metrics, Accuracy (2), Precision (3) and Recall (4) have been computed to ana-
lyze the meaningfulness of the TCS metric. Another two more specific metrics,
MacroPrecision and MacroRecall, have been obtained to compare the two sam-
pling strategies. The macro-averaging strategy (5) allows the calculation of any
standard performance metric label by label, then averaging to obtain the final
measure. In these equations n is the number of instances in the MLD, Yi the
real labelset associated to i-th instance, Zi the predicted one, k the number of

2 https://cran.r-project.org/web/packages/mldr.datasets/index.html.

https://cran.r-project.org/web/packages/mldr.datasets/index.html
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labels in L, and TP, FP, TN and FN stand for True Positives, False Positives,
True Negatives and False Negatives, respectively.

Accuracy =
1
n

n∑

i=1

|Yi ∩ Zi|
|Yi ∪ Zi| (2)

Precision =
1
n

n∑

i=1

|Yi ∩ Zi|
|Zi| (3)

Recall =
1
n

n∑

i=1

|Yi ∩ Zi|
|Yi| (4)

MacroMet =
1
k

∑

l∈L
EvalMet(TPl,FPl,TNl,FNl) (5)

4.1 Influence of Complexity in Classifier Performance

To analyze how the intrinsic complexity of each MLD influences the classifiers
performance, Figs. 1, 2 and 3 shows for each classifier the Accuracy, Precision
and Recall values along with TCS. The x-axis corresponds to the five MLDs
ordered according to their complexity.

From these plots observation that higher TCS values are correlated to worse
performances can be easily deducted. For the LP algorithm the three evaluation
metrics show a similar behavior, whereas for BR and ML-kNN Precision seems to
be less affected than Recall and Accuracy. To formally analyze this relationship,
a Pearson correlation test was applied over the TCS and performance values for

Fig. 1. Performance measures with respect to TCS values for the BR algorithm.
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Fig. 2. Performance measures with respect to TCS values for the LP algorithm.

Fig. 3. Performance measures with respect to TCS values for the ML-kNN algorithm.

each metric and algorithm. The obtained results are the shown in Table 2. As can
be seen, with the exception of Precision and BR, all the results are above 0.9 in
absolute value, meaning that a strong correlation exists. The negative values
imply an inverse relation, thus the higher is TCS the worse would be the result.

4.2 Influence of Sampling Strategy in Classifier Performance

Once the partitions for each MLD using the two sampling strategies are gener-
ated, it would be useful to know how potentially problematic cases affect each
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Table 2. Pearson correlation test results

Algorithm Accuracy Precision Recall

BR −0, 91 −0, 67 −0, 93

LP −0, 95 −0, 94 −0, 93

ML-kNN −0, 96 −0, 99 −0, 95

Fig. 4. Occurrences of problematic cases depending on the sampling strategy.

method. As mentioned above, some MLDs contain labels that could be consid-
ered as rare, since they only appear once or twice in the whole dataset. Using a
10 fcv scheme, it is easy that these singular cases fall down in the train parti-
tion almost always, leaving the test set with poor or null representation of these
labels. The own sampling method guarantees that at least once they will appear
in the test partition.

The plots in Fig. 4 show the amount of labels with one or none occurrences
in the test set produced by each strategy. Here ”Random” refers to the classical
random approach and ”Stratified” to the proposed stratified random sampling.
The emotions MLD does not have any case, thus his plot would be empty.
Looking at delicious, for instance, it can be verified that for folds 1, 3, 8 and 9
the random sampling clearly produces more problematic cases than the stratified
approach. Only for fold 10 the result is definitely worse for the stratified strategy.
With stackex-cs the differences appear to be smaller due to the y-axis scale. In
more than half of the folds the stratified strategy worked better than the random
one. The yeast MLD is not affected by the described problem as much as the
other ones. There are two folds in which the random approach produced one
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Table 3. Performance measures for each MLD, algorithm and sampling strategy

Dataset Algorithm Macro Precision Macro Recall

Random Stratified Random Stratified

delicious BR 0.4882 0.4919 0.0696 0.0705

LP 0.1113 0.1114 0.1101 0.1095

ML-kNN 0.6385 0.6134 0.0433 0.0420

emotions BR 0.5961 0.5997 0.5578 0.5832

LP 0.5761 0.5573 0.5565 0.5631

ML-kNN 0.7439 0.7122 0.6051 0.5837

enron BR 0.4556 0.4780 0.1684 0.1667

LP 0.1855 0.1696 0.1657 0.1536

ML-kNN 0.5942 0.6266 0.0880 0.0899

stackex-cs BR 0.4026 0.3864 0.1160 0.1156

LP 0.0964 0.0937 0.0911 0.0847

ML-kNN 0.6242 0.5876 0.0200 0.0184

yeast BR 0.4425 0.4576 0.3817 0.3971

LP 0.3764 0.3784 0.3762 0.3814

ML-kNN 0.6783 0.6803 0.3503 0.3515

problematic case, against only one for the proposed stratified method. Lastly,
enron has the most mixed situation, with large and small differences in both
ways.

The results produced by the classifiers were, in general, better for the strat-
ified strategy in those partitions where it produced less problematic cases. The
same was applicable for the random approach. Since the results obtained from
cross validation are always average values, these differences tend to compensate
among them. These final evaluation measures are the shown in Table 3. Best
values are highlighted in bold.

Overall there is a tie between the two strategies. Although there are MLDs
working better with the stratified one, such as yeast, and others with the random
alternative, such as stackex-cs, the remainder MLDs reflect a mixed behavior.
Even though there are some noticeable differences between the results produced
by the two strategies, most of them are in the order of a few thousandths.

5 Conclusions

The performance of a multilabel classifier is influenced by a plethora of circum-
stances, starting with the own model goodness, the learning process and the
traits (imbalance, missing values, outliers, label concurrence, etc.) of the data
used to train it. We hypothesized that two key aspects could be the inherent com-
plexity of the data and the strategy used to partition the MLDs, and described
two useful tools to face them.
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With the proposed TCS metric the theoretical complexity of any MLD can
be quickly and easily computed. As has been demonstrated with experimental
results, a clear correlation between the TCS level and the performance of the
tested MLC algorithms can be established. Therefore, this metric could be used
to know in advance if an MLD would obtain better or worse classification results
than others depending on their TCS values.

Regarding the sampling strategies to partition the datasets, the most used
approach in MLC is the random way. It can produce some problems with certain
MLDs, as has been explained, that could be solved with an stratified strategy.
Such a method has been proposed, and its behavior has been compared with the
standard random sampling. Although it clearly improved the balanced presence
of rare labels among folds in some cases, the classifiers performance did not show
fair overall differences. A further more extensive analysis, including additional
MLDs, algorithms and sampling strategies, will be needed to determine which
could be the best way for MLD partitioning.
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