
CO2RBFN-CS: First Approach Introducing
Cost-Sensitivity in the Cooperative-Competitive

RBFN Design
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Abstract. The interest in dealing with imbalanced datasets has grown
in the last years, since they represent many real world scenarios. Differ-
ent methods that address imbalance problems can be classified into three
categories: data sampling, algorithmic modification and cost-sensitive
learning. The fundamentals of the last methodology is to assign higher
costs to wrong classification classes with the aim of reducing higher cost
errors.

In this paper, CO2RBFN-CS, a cooperative-competitive Radial Basis
Function Network algorithm that implements cost-sensitivity is pre-
sented. Specifically, a cost parameter is introduced in the training stage
of the algorithm. This parameter modifies the learning rate of the weights
taking into account the right (or wrong) classification of the instance, the
type of class (majority or minority) and the imbalance ratio of the data set.
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1 Introduction

Nowadays, there exist many real applications represented by data sets where
the frequency (number of instances) of certain classes substantially exceeds the
frequency of the remaining classes. Furthermore, in imbalanced data sets [7],
as they are typically known, the importance resides in the fact that a minority
class usually represents the concept of interest, for example the intruder in an
intrusion detection system; whereas the other class represents the counterpart
of that concept (standard users).

Standard classifiers often show weaknesses when addressing the imbalance
problem, having a bias towards the majority classes. This is due to the mecha-
nisms inside these classifiers that benefit the right classification of the majority
classes to achieve a better accuracy metric. The methods proposed for deal-
ing with the imbalance problem can be categorized into three groups [19]: data
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sampling, algorithmic modification and cost-sensitive learning. The last app-
roach considers higher costs for the misclassification of examples of the majority
classes trying to minimize higher cost errors.

Radial Basis Function Networks (RBFNs) are one of the most important
Artificial Neural Network (ANN) paradigms in the machine learning field. An
RBFN is a feed-forward ANN with a single layer of hidden units, called radial
basis functions (RBFs) [5]. The overall efficiency of RBFNs has been proved in
many areas [6] such as as classification [25,26], regression [2,8] or time series
forecasting [10,22].

Authors have developed an algorithm for the cooperative-competitive design
of Radial Basis Functions Networks, CO2RBFN [25], that has been successfully
used in classification tasks. The base version of CO2RBFN has also obtained out-
standing results in imbalanced problems [23]. Cost-sensitivity is one of the main
methodologies addressing the imbalance problem. In this paper CO2RBFN-CS,
a first cost-sensitive version of CO2RBFN, is presented. CO2RBFN-CS is based
on introducing a cost in the training stage of CO2RBFN, modifying the learning
rate of the weights. This costs depends on the right (or wrong) classification of
the instance, the type of class (majority or minority) and the imbalance ratio of
the data set. The experimentation has been performed in two stages, firstly
CO2RBFN-CS is compared with its base version, CO2RBFN, and secondly,
CO2RBFN-CS is compared with existing cost-sensitive methods referenced in
the bibliography.

The text is organized as follows. In Section 2, the imbalanced data sets environ-
ment is described. Section 3 introduces the cost sensitive learning. CO2RBFN, is
described in Section 4 and the new method proposal, CO2RBFN-CS, is explained
in Section 5. Finally the analysis of the experiments and the conclusions are shown
in Sections 6 and 7, respectively.

2 Imbalanced Data Sets

In classification tasks, we are dealing with imbalanced data sets when the data
do not have an equitable distribution among the different classes of the problem.
Particularly, with a data set of only two classes, the imbalance problem occurs
when one class is represented by a large number of examples, while the other is
represented by only a few [7].

Classification in an imbalanced data sets environment is a difficult and impor-
tant task. It is difficult, due to standard classifier algorithms having a bias
towards the majority (negative) class and usually the minority (positive) class re-
presents the concept of interest. On the other hand, many real applications
present an imbalanced data sets scenario.

In the specialized literature, imbalanced data sets are managed as a whole
or are characterized according to their degree of imbalance using the imbalance
ratio (IR), which is defined as the ratio of the number of instances of the majority
class and the minority class.

Imbalanced data sets can be categorized taken into account the IR level [11]:
data sets with a low imbalance when the instances of the positive class are
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between 10 and 40% of the total instances (IR lower than 9) and data sets with
a high imbalance where there are no more than 10% of positive instances in the
whole data set compared to the negative ones (IR higher than 9).

In order to deal with this problem, some approaches have been proposed.
These approaches can be categorized into three major groups [19]:

– Data sampling: In which the training instances are modified in such a way
to produce a more or less balanced class distribution that allow classifiers to
perform in a similar manner to standard classification.

– Algorithmic modification: This procedure is oriented towards the adaptation
of base learning methods to be more attuned to class imbalance issues.

– Cost-sensitive learning: This type of solutions incorporate approaches at the
data level, at the algorithmic level, or at both levels combined, considering
higher costs for the misclassification of examples of the positive class with
respect to the negative class, and therefore, trying to minimize higher cost
errors.

Into classification task, accuracy is the most used empirical measure, but it is
not adequate to the evaluation in imbalanced domains due to the fact that it does
not distinguish between the number of correct labels of different classes, which in
the framework of imbalanced problems may lead to erroneous conclusions. One
of the most used metrics in imbalanced data sets is the geometric mean (GM)
of the true rates [3], defined as:

GM =

√
TP

TP + FN

TN

FP + TN
(1)

where TP , TN , FP and FN stand for True Positives, True Negatives, False
Positives and False Negatives respectively. This metric attempts to maximize
the accuracy of each one of the two classes with a good balance.

3 Cost-Sensitive Learning

Generally speaking, cost-sensitive learning states different costs of misclassifica-
tion with respect to the existing classes in a problem. With this aim, a cost matrix
C(i, j) defines the penalties of classifying examples of one class i as a different
one j. Typically, these misclassification costs can be heuristically established or
extracted from domain experts. In binary imbalance problems C(+,−) is the
cost of misclassifying a positive (class) instance as the negative and C(−,+)
is the opposite cost. As mentioned, in this kind of problem, it is more inter-
esting to obtain a correct classification of the positive instance and therefore
C(+,−) > C(−,+). According to [19], cost-sensitive learning algorithms can be
divided into three categories:

– Direct methods: These algorithms introduce misclassification costs into the
learning algorithms. In decision tree algorithms the cost information is used
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to choose the best attribute to split the data [18] or to determine whether a
subtree should be pruned [4]. In [30] an approach based on genetic algorithms
that incorporates misclassification costs in the fitness function is presented.
[16] modifies the learning weight algorithm for training RBFNs in order to
introduce cost sensitivity. In [28] and [31] a cost-sensitive learning for SVM
is implemented, the main idea being to assign a larger penalty value to false
negatives than false positives.

– Meta-learning: In this category an additional stage is introduced where the
training data are pre-processed or the output is post-processed, remain-
ing the original learning algorithm unmodified. Furthermore, cost-sensitive
algorithms can be classified into thresholding and sampling strategies. In
thresholding strategies instances are assigned to the class with minimum
expected costs as in [9]. In [36] a threshold-moving method is defined with
the aim of moving the output threshold toward inexpensive classes such that
examples with higher costs become harder to be misclassified. On the other
hand, the sampling methodology is based on undersampling/oversampling
[35] or assigning instance weights [29]. In [29] an instance-weighting method
is defined in order to design cost-sensitive trees.

4 CO2RBFN: An Evolutionary Cooperative-Competitive
Hybrid Algorithm for RBFN Design

Radial Basis Function Networks (RBFNs) are one of the most important Arti-
ficial Neural Network (ANN) paradigms in the machine design field. An RBFN
is a feed-forward ANN with a single layer of hidden units, called radial basis
functions (RBFs) [5,21].

From a structural point of view, an RBFN is a feed-forward neural network
with three layers: an input layer with n nodes, a hidden layer with m neurons
or RBFs, and an output layer (Figure 1).

Fig. 1. RBFN Topology



CO2RBFN-CS: First Approach Introducing Cost-Sensitivity 365

The m neurons of the hidden layer are activated by a radially-symmetric
basis function, φi : R

n → R, which can be defined in several ways [27], the
Gaussian function being the most widely used (Equation 2):

φi(x) = φi(e−(‖x−ci‖/di)
2
) (2)

where ci ∈ Rn is the center of basis function φi, di ∈ R is the width (radius),
and ‖‖ is typically the Euclidean norm on Rn. This expression is the one used
in this paper as the Radial Basis Function (RBF). The output node implements
the following function, where weights wij show the contribution of an RBF to
the output node (Equation 3):

fj(x) =
m∑
i=1

wijφi(x) (3)

The objective of any RBFN design process [6] is to determine centers, widths
and the linear output weights connecting the RBFs to the output neuron layer.

An important paradigm for RBFN design is Evolutionary Computation [14].
There are different proposals in this area with different scheme representa-
tions: Pittsburgh [15], where each individual is a whole RBFN, and cooperative-
competitive [32], where an individual represents a single RBF.

CO2RBFN [25] is an evolutionary cooperative-competitive hybrid algorithm
for the design of RBFNs. The network represents the entire population and each
individual is represented by a neuron or RBF. The fitness of each individual is
known as credit assignment and it is calculated by using three factors: the RBF
contribution to the network output, the error in the basis function radius, and
the degree of overlapping among RBFs.

The three parameters used for credit assignment are given as input of a Fuzzy
Rule-Based System that determines which of the four evolutive operator must
be applied to the individual.

The main steps of CO2RBFN, explained in the following subsections, are
shown in the pseudocode, in Algorithm 1. For a wider explanation of the algo-
rithm see reference [25].

Algorithm 1. Main steps of CO2RBFN
1. Initialize RBFN

2. Train RBFN

3. Evaluate RBFs

4. Apply operators to RBFs

5. Substitute the eliminated RBFs

6. Select the best RBFs

7. If the stop condition is not verified go to step 2

In the RBFN initialization step, to define the initial network, a specified
number m of neurons (i.e. the size of population) is randomly allocated to the
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different patterns of the training set. To do so, each RBF center, ci, is randomly
assigned to a pattern of the training set. The RBF widths, di, will be set to half
of the average distance between the centers. Finally, the RBF weights, wij , are
set to zero.

In the RBFN training step, LMS training algorithm is used.
For the RBF evaluation, a credit assignment mechanism is required in order

to evaluate the role of each RBF φi in the cooperative-competitive environment.
For an RBF, three parameters:

– The contribution of the RBF, ai, is determined by considering the weight
and the number of patterns of the training set inside its width.

– The error measure, ei, for each RBF, is obtained by counting the wrongly
classified patterns inside its radius.

– The overlapping of the RBF with respect to the other RBFs.

In CO2RBFN four operators have been defined in order to be applied to the
RBFs:

– Operator Remove: eliminates an RBF.
– Operator Random Mutation: randomly modifies the coordinates of the center

and the width of an RBF.
– Operator Biased Mutation: modifies the width and the coordinates of the

center using local information of the RBF environment.
– Operator Null: in this case all the parameters of the RBF are maintained.

The operators are applied to the whole population of RBFs. The probability
of choosing an operator is determined by means of a Mandani-type fuzzy rule
based system [20].

The inputs of this system are parameters ai, ei and oi used for defining
the credit assignment of the RBF φi. These inputs are considered linguistic
variables vai, vei and voi. The outputs, premove, prm, pbm and pnull, represent
the probability of applying Remove, Random Mutation, Biased Mutation and
Null operators, respectively.

The rule base system aims to evolve RBFs with a good behavior (high con-
tribution, low error and low overlapping) and to eliminate RBFs with a bad
behavior (low contribution, high error and high overlapping).

In the step of introduction of new RBFs, the eliminated RBFs are substituted
by new RBFs. The new RBF is located in the center of the area with maximum
error or in a randomly chosen pattern with a probability of 0.5 respectively.

The width of the new RBF will be set to the average of the RBFs in the
population plus half of the minimum distance to the nearest RBF. Its weights
are set to zero.

The replacement scheme determines which new RBFs (obtained before the
mutation) will be included in the new population. To do so, the role of the mutated
RBF in the net was compared with the original one to determine the RBF with
the best behavior in order to include it in the population.
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5 CO2RBFN-CS: CO2RBFN with Cost-Sensitivity

As mentioned in previous sections, approaches that deal with imbalanced data
sets can be categorized into three categories: Data sampling, Algorithmic modi-
fication and Cost-sensitive. This last approach can incorporate modifications at
the data level, at the algorithmic level, or at both levels combined, in order to
introduce higher costs for the misclassification classes.

A first base to design CO2RBFN-CS, the adaptation of CO2RBFN for add-
ressing imbalance problems, is that the Positive class is poorly represented (with
only a few instances) into an imbalanced data set. CO2RBFN learns the classes
of the data set using the Least Mean Square (LMS, [33]) and, in some way, each
class is learned from its instances. Nevertheless, this can be a difficult task for
the Positive class which can have few instances in an imbalanced data set.

Although the classical LMS algorithm, as it was seen in [24], obtains good
performance in imbalanced data sets scenarios, the objective of this paper is to
modify it in order to achieve better results. LMS is a local weights training algo-
rithm that uses the gradient descent technique. This technique exploits the local
information that can be obtained from the behavior of each RBFs. Equation 4
shows the update of the weights.

wk+1 = wk + α
ekφi(xk)
|φi(xk)|2 (4)

where k is the number of iterations, wk+1 is the next value of the weight vector,
wk is the present value of the weight vector and xk is the value of the actual
input pattern vector.

The present linear error, ek, is defined as the difference between the desired
output and the output network before adaptation. The α value is the speed of
learning, which measures the size of the adjustment to be made. The choice of
α controls stability and speed of convergence.

The challenge in the new proposal is to redefine the LMS algorithm incorpo-
rating cost-sensitivity. Few methods have been proposed in this line, the most
similar is [16] where cost-sensitivity is introduced in the weights training algo-
rithm, and although it is a gradient descent based algorithm, it does not use the
classic LMS algorithm. Moreover [16] is designed to solve an specific problem.

Focusing on our proposal, as can be seen in equations 5, a new variable cost
is introduced in the LMS algorithm. The equations 6, 7 are used to explain this
cost, instead of a cost matrix, because it depends on three aspects: the IR of the
data set, the classified class (Positive or Negative) and the current success on
the classification of the instance. Obviously cost depends on the classified class
and in this way its value is mainly modified when a pattern of the minority class
is learned. The IR of the dataset is taken into account because when this ratio
is high, that means there are few positive patterns, it is necessary to increase
the learning of rate of these patterns in order to improve the accuracy. Finally,
if an instance is being wrongly classified its learning rate will be increased.

In summary, the cost is higher if the IR is higher than 9, the classified class
is the minority one and the instance is being wrongly classified by the model.
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On the other hand the cost is lower if the IR is lower than 9, the classified class
is the majority one and the instance is being correctly classified by the model.

wk+1 = wk + cost ∗ α
ekφi(xk)
|φi(xk)|2 (5)

cost =

⎧⎨
⎩

csuccess well classified minority class pattern
cerror wrong classified minority class pattern

1 majority class pattern
(6)

IR < 9
{

csuccess = 1
cerror = 2

IR >= 9
{

csuccess = 2
cerror = 4

(7)

6 Experimentation and Results

The methodology to test CO2RBFN-CS has consisted in comparing it with its
base version CO2RBFN and after that, with other more mature cost-sensitive
methods. With this objective, different data sets have been chosen from the
KEEL data set repository [1]. Table 1 summarizes the data employed in this
study and shows, for each data set, the number of examples (#Ex.), number
of attributes (#Atts.), class name of each class (minority and majority), class
attribute distribution and IR. This table is ordered by the IR, from low to
highly imbalanced data sets. Half of the data sets have an IR lower than 9 and
the remaining ones have an IR higher than 9.

Table 1. Description for imbalanced data sets

Data sets #Ex. #Atts. Class(min., maj.) %Class(min., maj.) IR

glass0 214 9 (build-win-float-proc, remainder) (32.71, 67.29) 2.06
haberman 306 3 (Die, Survive) (27.42, 73.58) 2.68
glass0123vs456 214 9 (non-window glass, remainder) (23.83, 76.17) 3.19
vehicle0 846 18 (Van, remainder) (23.64, 76.36) 3.23
ecoli2 336 7 (pp, remainder) (15.48, 84.52) 5.46
pageblocks0 5472 10 (remainder, text) (10.23, 89.77) 8.77
wowel0 988 13 (hid, remainder) (9.01, 90.99) 10.10
shuttle0vs4 1829 9 (Rad Flow, Bypass) (6.72, 93.28) 13.87
yeast2vs8 482 8 (pox, cyt) (4.15, 95.85) 23.10
yeast1289vs7 947 8 (vac, nuc, cyt, pox, erl) (3.17, 96.83) 30.56
yeast5 1484 8 (me1, remainder) (2.96, 97.04) 32.78
yeast6 1484 8 (exc, remainder) (2.49, 97.51) 39.15

With these data sets, a typical experimental framework has been established
with 5-fold cross validation and five repetitions for obtaining the results.
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Firstly the new proposal, CO2RBFN-CS, and the base version, CO2RBFN,
are compared. The same configuration parameters are set up for the two algo-
rithms: 200 iterations are established for the main loop and the number of indi-
viduals or RBFs is set to five.

In Table 2 the average correct classification rates, using GM measures, obtai-
ned by both versions (the original CO2RBFN and the CO2RBFN-CS) are shown.

Table 2. Average GM test results

Data sets CO2RBFN-CS CO2RBFN

glass0 78.314 75.693
haberman 63.206 61.209
glass0123vs456 93.363 92.269
vehicle0 90.776 89.116
ecoli2 92.072 92.024
pageblocks0 87.832 86.073
vowel0 91.717 87.026
shuttlec0vsc4 99.665 99.671
yeast2vs8 76.291 71.883
yeast1289vs7 68.788 55.190
yeast5 94.803 94.121
yeast6 87.840 83.269

Table 3. Wilcoxon test. R+ corresponds to new proposal, CO2RBFN-CS, and R− to
CO2RBFN

R+ R− p-value

77.0 1.0 0.002526

If these first results are analyzed (Table 2), it can be observed that CO2RBFN-
CS outperforms CO2RBFN in 11 of the 12 tested data sets.

In order to detect significant differences, the Wilcoxon signed-ranks test [34]
is applied to compare the results of each version. Table 3 shows the result of the
test, in this table R+ corresponds to CO2RBFN-CS and and R- to CO2RBFN.
The p-value obtained is very low, indicating that the null hypothesis of equal-
ity of means is rejected with a high confidence level. Therefore, CO2RBFN-CS
outperforms CO2RBFN with significant difference.

Focusing the analysis on the IR of the data sets, we can observe that when
the IR is higher than 9 the difference between the methods grows. As example,
for yeast6 CO2RBFN-CS beats CO2RBFN by 4 points and for yeast1289vs7 by
13 points. These results indicate that the cost-sensitive methodology proposed
in this paper is even more suitable when the IR grows.

Now, CO2RBFN-CS is compared with other more mature cost-sensitive meth-
ods, specifically with the cost-sensitive methods implemented in Keel, these are:
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Table 4. Average GM test results

Data sets CO2RBFN-CS SVM-CS-RBF C4.5-CS NN-CS

glass0 78.314 78.799 78.450 59.969
haberman 63.206 52.040 50.040 61.541
glass0123vs456 93.363 93.624 87.459 91.191
vehicle0 90.776 40.095 92.850 65.587
ecoli2 92.072 90.764 72.263 67.314
pageblocks0 87.832 60.895 97.957 70.522
vowel0 91.717 100.000 88.702 66.653
shuttlec0vsc4 99.665 95.003 99.971 84.736
yeast2vs8 76.291 75.269 84.698 65.190
yeast1289vs7 68.788 69.324 62.057 43.873
yeast5 94.803 96.931 93.098 62.166
yeast6 87.840 87.406 85.337 55.909

Table 5. Friedman ranking test

Algorithm Ranking

CO2RBFN-CS 1.833
SVM-CS-RBF 2.167

C4.5-CS 2.417
NN-CS 3.583

Table 6. Hochberg post hoc test

i algorithm z = (R0 −Ri)/SE p Hochberg

3 NN-CS 3.320392 0.000899 0.016667
2 C4.5-CS 1.106797 0.268382 0.025
1 SVM-CS-RBF 0.632456 0.527089 0.05

– SVM-CS-RBF [28,31]: a cost-sensitive learning for SVM, with RBF Kernel,
that assigns a larger penalty value to false negatives than false positives.

– C4.5-CS [29]: an instance-weighting method to design cost-sensitive trees.
– NN-CS [36]: a threshold-moving method that aims to move the output

threshold toward inexpensive classes such that examples with higher costs
become harder to be misclassified.

Further information can be found in section 3 and in the referenced bibliography.
The parameters established for these methods are the default ones configured in
Keel. The results obtained for the different methods are shown in Table 4.

With the objective of carrying out an adequate multiple comparison, as rec-
ommended in [13], the statistical analysis was performed in two steps. Firstly,
the Friedman test [12] is used to rank the methods, and to establish if any
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statistical differences exist. In the ranking of the methods obtained by this test,
Table 5, CO2RBFN-CS achieves the best (lowest) value. The p-value computed
by Friedman test is 0.0058, which indicates significant differences among the
methods. Secondly, in order to elucidate these significant differences between
CO2RBFN-CS and the remaining methods, the Hochberg test [17] has been
applied, obtaining the results showed in Table 6. Taking CO2RBFN-CS as con-
trol algorithm, because is the best algorithm according to Friedman test, it can
be highlighted that CO2RBFN-CS obtains significant differences with respect to
a more mature method such as NN-CS, and a notable p-value with respect to
C4.5-CS. In any case it is remarkable that this first approach introducing cost-
sensitivity into a cooperative-competitive design of RBFNs, CO2RBFN-CS, has
achieved similar or even better results than other more tested methods.

7 Conclusions

Currently, the data sets that represent an important number of real applications
are imbalanced. These imbalance problems are addressed with different methods
which can be categorized into three groups. data sampling, algorithmic modi-
fication and cost-sensitive learning. Cost-sensitive learning can hybridize both
data sampling and algorithmic modification in order to incorporate higher costs
for the misclassification of examples, trying to minimize higher cost errors.

In this paper CO2RBFN-CS, a first approach in the cooperative-competitive
design of RBFNs with cost-sensitivity, is presented. This proposal is based on
introducing a cost parameter into the training weights stage of the algorithm in
order to modifying its learning rate. This costs depends on the right (or wrong)
classification of the instance, the type of class (majority or minority) and the
imbalance ratio of the data set.

The results show that CO2RBFN-CS outperforms CO2RBFN in 11 of the 12
tested data sets and after applying Wilcoxon’s test, significant differences have
been achieved. Also, it can be observed that CO2RBFN-CS even works better
when the IR of the data set is higher.

When CO2RBFN-CS is compared with more mature cost-sensitive methods
in the bibliography, it can be highlighted that CO2RBFN-CS achieves the first
position in the ranking of the Friedman and, even, outperforms the NN-CS
method with significant differences. In summary, this first approach in the cost-
sensitive cooperative-competitive design of RBFNs, CO2RBFN-CS, has obtained
promising results, similar or even higher than other more mature methods. As
future research lines the proposed equation will be modified adjusting the value
of the parameters or introducing new ones related with the neighborhood of
positive patterns.
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