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LI-MLC: A Label Inference Methodology for
Addressing High Dimensionality in the Label

Space for Multilabel Classification
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Abstract—Multilabel classification (MLC) has generated
considerable research interest in recent years, as a technique that
can be applied to many real-world scenarios. To process them
with binary or multiclass classifiers, methods for transforming
multilabel data sets (MLDs) have been proposed, as well as
adapted algorithms able to work with this type of data sets.
However, until now, few studies have addressed the problem
of how to deal with MLDs having a large number of labels.
This characteristic can be defined as high dimensionality in the
label space (output attributes), in contrast to the traditional high
dimensionality problem, which is usually focused on the feature
space (by means of feature selection) or sample space (by means
of instance selection). The purpose of this paper is to analyze
dimensionality in the label space in MLDs, and to present a
transformation methodology based on the use of association rules
to discover label dependencies. These dependencies are used to
reduce the label space, to ease the work of any MLC algorithm,
and to infer the deleted labels in a final postprocessing stage. The
proposed process is validated in an extensive experimentation
with several MLDs and classification algorithms, resulting in
a statistically significant improvement of performance in some
cases, as will be shown.

Index Terms—Association rules (ARs), data transformation,
dimensionality reduction, multilabel classification (MLC).

I. I NTRODUCTION

I N a traditional classification data set, each data instance
is associated with one, and only one, class (label). By

contrast, in a multilabel data set (MLD), every data sample has
a set of labels associated with it, and therefore the classifier has
to predict multiple outputs. There are MLDs [1] with several
hundreds of labels, but many of the proposed approaches to
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multilabel classification (MLC) reduce this problem transform-
ing the MLD to obtain one or more single label data sets.

High dimensionality is present in data used every day and
establishes an important obstacle in many areas, among them
information retrieval [2], natural language processing [3], and
machine learning [4]. The problem of high dimensionality in
classification tasks is well studied. However, published work
has been mainly restricted to feature and sample spaces. In
MLC, we find the same problem in a new space: the label
space. How high dimensionality in the label space influences
multilabel classifiers, and how to deal with this problem, is
something poorly studied in the literature until now.

Feature selection algorithms [4], [5] have been used for
several years to reduce dimensionality in the input attribute
space, and there are some specific proposals [6] for MLC.
These algorithms evaluate correlations between features and
the class associated with each instance, as well as between
one feature and another, deleting those which do not offer
useful information to the task at hand: redundant features and
features not correlated to the class. In the end, the classifier
is trained with a reduced feature space that improves both
learning time and classification results. The question arises of
how this basic idea could be transferred to the label space
in MLDs.

Data set characterization should be an important step to
determine the suitability of an algorithm prior to its appli-
cation. In MLC, the two main measures used with this goal
(called Card and Dens, defined below) offer limited informa-
tion, basically the average number of labels per instance in an
MLD. It would be desirable to have additional information to
know how the labels are distributed in the MLDs, as this fact
will influence the MLC classifiers behavior.

The aim of this paper is to analyze the impact that high
dimensionality in the label space has on the behavior of
multilabel classifiers, to propose some measures for MLD
characterization, and to present a methodology for label
dimensionality reduction, called label inference for MLC
(LI-MLC). It should be emphasized that LI-MLC is not a new
MLC algorithm, but a method that acts as a wrapper around
any existing multilabel classifier. As will be observed, some
of the classification algorithms documented in the specialized
literature use label dependency information internally to
improve their functioning. LI-MLC generalizes this technique,
so that it could be used regardless of the underlying classifi-
cation algorithm.
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LI-MLC is a pre-/post-processing methodology designed to
reduce label dimensionality in MLDs. It can be used along
with any MLC algorithm and, as will be shown, it can improve
execution performance as well asclassification results. In the
preprocessing phase, LI-MLC works with the labels associated
with each sample, applying an association rule (AR) mining
algorithm to obtain a set of strong ARs. These rules are used
to reduce the dimensionality of the label space, obtaining as a
result a simplified training partition. This is later used to build
the classifier. Finally, in the postprocessing stage, the same set
of rules allows the inference of the labels to be added to the
prediction made by the multilabel classifier.

The benefits of this approach will be demonstrated with
an extensive experimentation, using 16 MLDs from several
domains, and comparing the results obtained with seven MLC
algorithms. The improvements are substantial in some cases,
in both classification performance and speed, as will be shown.

This paper is organized as follows. Section II introduces
the MLC problem and offers an analysis of the difficulties
produced by high dimensionality in the label space in this kind
of learning task. Section III details the proposed methodology
and describes its relation with other published proposals.
Section IV introduces some measures to characterize the
label distribution in MLDs. In Section V, the experimental
framework used is described, whereas Section VI analyzes
the results obtained from this experimentation. Section VII
provides the final conclusion.

II. M ULTILABEL CLASSIFICATION

Classification is one of the most important tasks using
supervised learning. The process starts with a set of labeled
samples(xi , yi ), and obtains a modelf that is capable of
labeling new samples not observed during the learning phase.
Traditionally, classifiers are designed with data sets in which
each samplexi is associated with one class or labelyi ∈ L,
which is the target value to obtain once the model is built.
Therefore, the goal is to associate each sample to a class
among|L| possible classes, so that the range of possible output
values is limited by the number of existing classes.

In MLC [7], the output returned by the classifier has to be
a set of labelsYi ⊆ L. Thus, there are 2|L| different possible
values as output: these can be any combination of labels inL.
As stated in [8], this prediction can be generated in one of
two ways: 1) with a binary partition of the label set or 2) with
a label ranking.

The traditional classification algorithms cannot be used
directly, as such, to tackle a problem of MLC. Reference [8]
proposes two different ways to deal with this problem.

1) The data transformation approach: Its goal is to trans-
form the data set, making it possible to process it using
non-MLC algorithms.

2) The method adaptation approach: Its goal is to adapt a
traditional classification algorithm, adding the ability to
deal with samples, which are associated with multiple
labels.

Sections II-A and II-B offer a brief introduction to each
approach. It is also important to know some specific measures

used in MLC, described in Section II-C. The problems that the
presence of high dimensionality add to this task are discussed
in Section II-D. Finally, some of the available options for
obtaining label dependency information are enumerated in
Section II-E.

A. Data Transformation Approach

While many data transformation-based methods have been
proposed (a complete taxonomy can be found in [9]), binary
relevance (BR) and label powerset (LP) are the most important
ones. These methods are algorithm independent and also
known as problem transformation methods.

The BR [10] transformation divides an MLD into multiple
binary data sets. An independent binary classifier is trained for
each label. Therefore, there will be as many binary classifiers
as labels there are in the original data set. BR dismisses the
relationship between labels. It also implies a linear increase in
execution time by the total number of labels.

There are transformation methods based on pairwise
comparison. Taking all the possible pairs of labels, each binary
classifier works with one of them. The predictions made
by all the classifiers are combined with a voting algorithm.
Some proposals, such as CLR [11], use an improved voting
mechanism to prevent evaluation of all label pairs.

The LP [12] method transforms an MLD into a multiclass
data set, in which each data instance is associated with only
one class, allowing the use of any multiclass classification
algorithm. This is done interpreting as class each different
combination of labels, which appears in the MLD. The main
problem with this method is that the number of combinations
of labels is 2|L|, so the amount of classes could become
intractable.

An important side effect of these transformation methods is
the extreme imbalance problem, which its use generates. For
BR, each individual classifier is trained considering only the
samples with a particular label associated as positive, and all
others as negative. Usually, the number of negative samples is
much larger than the number of positive, and therefore there is
a great imbalance ratio. LP increases significantly the number
of different classes in the data set given to the classifier. The
more classes exist, the fewer samples per class, and the greater
the imbalance.

B. Method Adaptation Approach

The transformation methods described above allow us to
address the MLC problem using algorithms that are not
designed for the specificities of the task. Faced with this
choice, the focus of the algorithm adaptation approach [8]
aims to modify existing algorithms so that they can deal with
MLDs, without requiring any preprocessing. In recent years,
the number of proposals published in this regard has increased
strikingly, and they have been reviewed in [7], [8], and [13].
Only the more remarkable ones are listed here.

Clare and King [14] modified the C4.5 algorithm with two
changes: each leaf of the tree stores not a class but a set of
them, and the original entropy measure is adapted to consider
the fact that the samples are multilabel. Another tree-based
algorithm is proposed in [15].
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There are several adaptations of instance-based algorithms.
The most notable are ML-kNN [16] and IBLR-ML [17], the
latter being a variation of the former.

The first adaptation of a neural network to MLC was
BP-MLL [18], a perceptron with backpropagation learning,
which introduces a modified error function that considers the
multilabel nature of the samples. Another proposal in this
field is the ML-RBF [19] algorithm for designing multilabel
RBFNs.

There are also proposals based on support vector machines,
such as rank SVM [20], as well as several methods based on
the use of ensembles of classifiers with transformation of data,
such as classifier chains (CCs) and ensembles of CCs (ECC)
[21], random k-labelsets (RAkEL) [22], and hierarchy of
multilabel classifiers (HOMER) [23], and even those based on
ant colonies, like MuLAM [24]. The number of publications
related to the adaptation of algorithms for MLC is constantly
growing.

C. Evaluation Metrics

The peculiarities of the MLC problem require the use of new
measures: 1) to characterize the MLDs and 2) to facilitate the
evaluation of the MLC algorithms.

For the first objective, different metrics have been proposed,
label cardinality (Card) and label density (Dens) being the two
most widely used.Yi being the subset of labels associated with
the ith sample, Card is defined in (1) as the average number
of labels per sample in the data setD. Dens, defined in (2),
provides a measure independent of the absolute number of
labels in the data set

Card(D) =
|D|∑

i=1

|Yi |
|D| . (1)

Dens(D) = Card(D)

|L| . (2)

In terms of measures that assess the quality of predictions,
they can be grouped: 1) by operating on a bipartition of
the labels or on a ranking of these and 2) according to the
calculation method: averaging by instance (example based) or
label (label based). There are more than a dozen different
measures that are explained in detail in [7] and [8]. The
measures used in this paper will be introduced later, along
with the experimental framework description.

D. Label Space Dimensionality Problem

The following is a discussion about how a high-dimensional
label space influences different kinds of MLC algorithms.

1) Adapted Algorithms: With a few exceptions, like pro-
posals based on the k-NN approach, adapted algorithms
have to construct a model, which is a representation of
correlations between input attributes and output labels.
The higher the number of labels the greater the complex-
ity of this model, with an increment in the time used to
train it. Simpler models tend to be more efficient.

2) Binary Classifiers: BR and some adapted algorithms,
such as CC and ECC among others, are based on the

training of several binary classifiers, one per label. Thus,
working with MLDs, which have hundreds of labels, it
will be necessary to train the same number of classifiers,
something very time—and memory—consuming. The
higher the number of labels, the greater the likelihood
that relationships between them exist, and generally this
correlation is not considered by these kinds of MLC
methods.

3) Combinatorial Methods: Combining active labels in
each sample, and using the result as a class identifier,
is an easy way to work with MLDs leaning in mul-
ticlass classifiers. It is an approach used by the LP
transformation and some other MLC algorithms, but
an unfeasible option when there are a large number of
labels because of its exponential combinatorial gener-
ation of new classes. It also usually suffers from high
dispersion, with a low number of instances associated
with each class.

4) Ensembles: CC/ECC, RAkEL, and HOMER are exam-
ples of ensemble methods applied to MLC. Like them,
many of the existing proposals work internally as a
collection of binary classifiers or classifiers trained with
subsets of label combinations. Therefore, they suffer
from the same weakness cited above for BR and LP.

As a general rule, reducing the output space (number
of labels) will also reduce the time and memory needed
to train the classifier, and will generate simpler models,
which usually work better. Based on this idea, in the liter-
ature, there are several proposals [25]–[27] (see discussion in
Section III-C) whose goal is to compress the label space. The
common approach in these proposals is to project the label
space in a lower dimensionality space, transforming the initial
MLC problem into another kind of task, such as regression or
binary classification. Once this intermediate problem has been
solved, it is necessary to invert the previous transformation to
get the multilabel predictions. The process of obtaining this
preimage of the projection creates a new problem that can be
more difficult to confront than the original one.

An alternative to the transformation of the label space would
be the selection of individual labels based on label dependency
information. The correlation among labels has been used for
different purposes, as detailed in the following, and it is
the foundation of the proposed method for reducing label
dimensionality described in Section III.

E. Label Dependency in MLC

Assuming an ideal real-world scenario, working with
cleaned data, that two or more labels appear together very
frequently suggests some levels of correlation among them.
The certainty and strength of this dependency should be
analyzed, as this information can be very useful for any MLC
algorithm.

As stated in [7], one of the key challenges in multilabel
learning is to reduce the output space exploiting correlations
among labels. In this paper, the authors classify the strategies
used by MLC algorithms to obtain these correlations into three
categories: 1) first order; 2) second order; and 3) high order.



CHARTE et al.: LABEL INFERENCE METHODOLOGY 1845

The order depends on the number of labels whose dependency
is analyzed, only one, two, or more than two, respectively.
In the following, we propose another way of grouping the
classifiers, by means of the method they use to obtain the
dependency information.

Some MLC methods, such as BR, completely overlook
the presence of label dependency information, as they train
independent classifiers for each existent label. Others, such as
LP, explicitly incorporate this information using each different
label combination as a class identifier. However, there are more
sophisticated proposals in this field using various approaches
to capture label dependencies, among them.

1) Implicitly: There are several methods, such as CC,
ECC [21], 2BR [28], and BR+ [29], which extend the
feature space of each binary classifier using as new input
attributes the outputs of the other classifiers, through the
composition of CCs or classifier stacking, thus implicitly
using information about the relations between labels.

2) Statistical Models: Proposals made in [30]–[32] resort to
statistical models, such as bayesian networks to explic-
itly represent dependencies among labels, or chi-square
tests of independence to assign a dependence score to
each pair of labels.

3) Clustering: Another way to collect label dependency
consists in clustering the instances and obtaining infor-
mation on the labels, which appear in each group. This
is an approach used in HOMER [23].

4) Others: In addition to the previous groups, there are
other approaches for extracting label dependency infor-
mation. RAkEL [22] uses an ensemble of classifiers
trained with a small random subset of labels, using LP to
capture label dependencies. PLST [33] uses a geometric
solution, using projections of a hypercube to smaller
dimensions in order to obtain label correlations. Park
and Fürnkranz [34] use ARs with the goal of defining
classification restrictions based on label dependency.

Some of these approaches use the label dependency knowl-
edge internally to enhance the learning process, others to
divide the training data and construct ensembles, and another
to impose restrictions over the classification results. None of
them aim to reduce the label space from the beginning, prior
to the training phase.

The effectiveness of label space reduction methods
[25]–[27] and the usefulness oflabel-dependence informa-
tion [21], [30]–[32] have both been demonstrated, there-
fore they are two proven techniques. Our hypothesis is that
label dependency information can be used to remove some
labels, reducing the label space without relying on compres-
sion/projection schemes. Thus, what we propose in LI-MLC is
to combine these two techniques to face the label space high-
dimensionality problem, relying on an AR mining algorithm
as a tool to obtain strong correlations.

III. L ABEL INFERENCE FORMLC

LI-MLC aims to reduce the number of labels of an MLD,
but considering that they are a part of the output that the
multilabel classifier has to predict. A method for analyzing

strong correlations between labels, able to infer one label from
the presence of others, is needed. Using this method, the labels
that can be inferred will not participate in the training stage.
Using an inference mechanism,removed labels will be added
to predictions made by the multilabel classifier. If redundant
labels are stripped from the data set, the training will need less
time, and the classifier obtained will be simpler and, probably,
more effective and efficient.

LI-MLC works over the label space of an MLD, using
an AR mining algorithm to obtain a set of ARs. These are
first used to reduce label dimensionality, and then, once the
classifier has been obtained, to infer the labels to be added to
the final results.

A. Retrieving Label Dependency Using ARs

Our interest is in obtaining subsets of labels with strong
correlations, keeping in mind that even nonfrequent labels with
a high correlation could be useful. AR mining algorithms [35]
use various techniques, such as frequent itemset generation,
which prunes the search space thus allowing the retrieval of
correlations in limited time. We have to tune the ARs mining
algorithm in two ways, choosing a rule selection measure
and establishing its threshold value, as well as the minimum
support (Supp).

The most common measure in ARs mining is confidence
(Conf) and its joint use with Supp is known as the confidence–
support framework [36]. Supp(Z) is defined (3) as the pro-
portion of transactions in a database that contains a specific
itemset Z . The confidence of a rule with antecedentX and
consequentY , Conf(X → Y ), is defined (4) as the probabil-
ity of the consequent presence under the condition that the
antecedent is also present in the transaction

Supp(Z) = P(Z). (3)

Conf(X → Y ) = Supp(X → Y )

Supp(X)
. (4)

As stated in the discussion of implication rules in [37],
a high value of Conf in some cases could appear without
the existence of an implication from the antecedent to the
consequent, and this is a weakness with respect to the goal
of this paper. There are several other measures for evaluating
ARs, among them conviction (Conv) [37] (5) that better fits
the aims in this proposal, as it is a directed measure, which
considers the information on the absence of the consequent.
A high value in this measure means, no matter what the
Supp of the AR, that an implication between antecedent and
consequent exists. Unlike other measures, Conv is sensitive
to rule direction, and antecedent and consequent cannot be
interchanged without changing the result obtained from the
measure. For this reason, this measure was chosen to filter the
ARs generated by the algorithm

Conv(X → Y ) = 1 − Supp(Y )

1 − Conf(X → Y )
. (5)

With regard to which ARs mining algorithm to use, in [35],
there is a review of the most common ones, many of them
based on the best known: thea priori algorithm. As stated
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in [38], FP-Growth is a better AR mining algorithm for work-
ing with large databases thana priori. The number of labels
and samples in an MLD could be very large, and therefore it
is important to choose an efficient mining algorithm.

The details of the methodology and its implementation are
covered in Section III-B. To know when this methodology
will be useful, it is important to understand how the labels
are distributed in an MLD, performing a characterization, as
discussed in Section IV.

B. Description of the Proposed Methodology

LI-MLC works in three stages: 1) preprocessing; 2) classi-
fier training; and 3) postprocessing. They are clearly shown in
Fig. 1. The goal of each phase is as follows.

1) Preprocessing Phase: Takes as input the training data of
an MLD, and produces a reduced version of the training
partition, with fewer labels, and a set of ARs in the form
expressed in (6).

2) Classifier Training: The reduced training partition is
then used to train any multilabel classifier.

3) Postprocessing Phase: Once the prediction made by the
multilabel classifier has been obtained, the evaluation of
the ARs adds the inferred labels to produce the final
prediction

Li , . . . , L j → Lk, . . . , Lm Lx ∈ L . (6)

In the preprocessing phase, LI-MLC takes each label as an
item in a transaction, and the set of labels associated with
each sample is interpreted as atransaction. The instancesXi

of the training partition are processed (lines 11–14) to extract
their label setsLi , using each one of them as a transaction. The
databaseT composed by those transactions is given to the FP-
Growth algorithm, obtaining a setR of ARs, which is sorted
from higher to lower Conv to apply the stronger rules first.

With the setR of ARs at its disposal, LI-MLC collects the
labels that appear in the consequent of each rule obtaining
the set of labels to delete. As the same label could appear
in the consequent of more than one rule, the cardinality of
the set of labels could be lower than that of the set of rules.
In this situation, only the rule with the highest Conv will be
used, the rest are discarded (line 20) fromR. In addition,
it is not possible to delete a label if it is the only one to
appear in some instances of the data set, something that will
reduce the number of labels to eliminate (lines 21–23) in
some cases.

Taking the final setC of labels to delete as reference, the
method generates a version of the training partition without
them (line 27). This is the reduced training set, with fewer
output attributes than the original one, given as input to the
selected MLC algorithms. The complexity of this process
depends on the ARs mining algorithm used, but it is important
to notice that preprocessing is needed only once per partition
since the ARs mining algorithm used is deterministic. Thus,
having generated the reduced training partition, it could be
used to train any classifier.

The postprocessing obtains the predictionsPi made by the
multilabel classifier for each sample (line 33). This prediction

Fig. 1. LI-MLC pseudocode.

is incomplete: the final prediction must reflect the strong
label dependencies extracted previously. To do so, LI-MLC
evaluates the setR of rules obtained in the preprocessing stage.
The labels present in the partial predictionPi will determine
the antecedent of the rules inR to be applied, adding the labels
represented by each consequent. This is an iterative process
(lines 34–36) in which the rules are taken in the same order
used in the preprocessing phase, activating the label of the
consequent in each step if the current sample has activated
the labels of the antecedent of the rule.

In this way, the final prediction is generated and given as
the result. The complexity of this process is linear with respect
to the number of rules, always far smaller than the number of
samples or input attributes.
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C. Relationship With Other Label Space Dimensionality
Reduction Proposals

The need to reduce the label space dimensionality has
been approached in several different ways in the litera-
ture in the past. In the following, there is a brief analysis
of the relationship between LI-MLC with some of these
proposals.

1) Label Subset Selection: The decomposition of the set
of labels in several smaller ones is an approach used by
algorithms, such as RAkEL [22] and HOMER [23]. Both
use subsets of labels to train several multiclass classifiers, by
means of the LP transformation. RAkEL picks the subsets
randomly, whereas HOMER uses a hierarchical clustering to
generate subsets of correlated labels. In the end, all labels
are used in training, as the label space is not reduced but
divided in groups. The inner classifier used by these algorithms
is a multiclass classifier, not a multilabel classifier. LI-MLC
reduces the label space before the classifier starts to work,
thus there will be labels that do not participate in the process.
Furthermore, LI-MLC does not transform the original problem
in a different one, and does not imposes the use of a specific
type of classifier. Any multilabel classifier can be used over
the reduced data.

2) Pruning of Infrequent Label Sets: Read et al. [39]
propose a method based on the LP transformation. The label
space is reduced by pruning those label sets, which do not
appear above a particular threshold. These label sets are later
decomposed in simpler ones, with fewer labels, reintroducing
those subsets, which exceed this threshold. This way only
the most important relationships among labels are implicitly
captured, improving the generalization ability in classification.
An ensemble of pruned sets (EPS) is also proposed in the same
paper. As with RAkEL and HOMER, the underlying classifier
is a multiclass classifier, not a multilabel classifier. Therefore,
it is not a method generally applicable independent of the
problem faced or the classification algorithm chosen, as is
LI-MLC. In addition, LI-MLC obtains the label dependencies
by means of ARs mining, measuring the correlations among
them, whereas pruned sets and EPS obtain this information
implicitly.

3) Kernel Dependency Estimation: The technique proposed
in [25] is not specifically designed to reduce the label space
of an MLD, but as a general way of finding dependencies
between a set of inputs and a set of outputs, MLC being one
of its possible applications. By means of a kernel principal
component analysis of the label space, a set of uncorrelated
projections is obtained. In addition, the number of outputs can
be reduced in this phase selecting only the most significant
representations (those with larger eigenvalues). The mappings
between the inputs and the representations of the outputs
can be learned independently, for example, using regression.
In the final step, with the independent predictions obtained
from the regressors, a function is applied to find the preimage
of the projection and get the final set of outputs. Several
functions can be used for this task, depending on the specific
application at hand. For classification, the authors opted for
finding the solution among a set of candidates acquired from
the training set. Our approach with LI-MLC is totally different.

The original label space is used to learn the correlations
between sets of labels, but it is not transformed to get inde-
pendent representations. Only the labels that can be inferred
with a specific level of confidence are eliminated, giving as a
result a new MLD. Therefore, the classification problem is still
a multilabel one, and thus can be faced with any multilabel
classifier. Most importantly, in the final phase, LI-MLC obtains
a multilabel prediction, which only needs to be complemented
with labels inferred from the rules. There is no need to find
the preimage of a projection.

4) Multilabel Prediction Via Compressed Sensing: The
proposal made in [26] is based on a proven compression
technique called compressed sensing (CS), which states that
the complexity of a model withk labels can be reduced to
the training ofO[log(k)] simpler models. There is a premise
to accomplish: a significant level of sparsity in the label
space must exist. Thus, it is a useful approach for MLDs that
have a very large number of different labels, but with only
a small subset of them appearing in each instance. This is
the nature of the two data sets used in their experimentation.
The procedure followed is similar to that described above
for kernel dependency estimation. The compression phase
is made by random projections of the original binary label
space, obtaining a representation in a real (nonbinary) lower
dimensionality space. Afterward, these projections are used
to train a set of regression models. Finally, the classification
is made using this set of regressors, and their outputs are
decompressed to obtain the labels predicted for each sample.
The only similarity between this approach and LI-MLC is
founded on the existence of a preprocessing phase, which
reduces the output space and a postprocessing phase in charge
of its reconstruction. LI-MLC can be applied without assuming
a sparse label space. If the label space is very sparse the
extraction of ARs can be more difficult (see Section VI).
Furthermore, the proposal in [26] is a complete MLC
algorithm based on compression and regression, whereas
LI-MLC, as has been said above, works as a wrapper around
any multilabel classifier, which reduces the label space at the
input and complements the prediction made by this classifier at
the output. Thus, LI-MLC has a broader field of applications.

5) Compressed Labeling on Distilled Label Sets: In addi-
tion, based on the idea of CS, Zhouet al. [27] propose a
method that combines a variation for compressing the label
space while still using classification algorithms to make the
predictions, instead of relying on regression. There are two
key elements in this proposal: 1) the method to extract the
most frequent subsets of labels in the MLD, the so called
distilled label sets (DLs), and the transformation of the real
lower dimensionality space obtained by random projections
in a binary one. The latter is accomplished using the signs
of the random projections. The former applying a recursive
clustering approach over the label space. Once the compressed
label space has been obtained, a binary classifier is used to
predict each label independently. Those predictions are then
complemented by means of the information of correlation
stored in the DLs. The steps followed by compressed label-
ing (CL) are the same as LI-MLC. First, information about
label dependence is obtained. CL relies on the extraction of



1848 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

DLs, whereas LI-MLC obtains a set of ARs. Second, the label
space is compressed. In CL, this step is done by random
projections, while in LI-MLC, it is accomplished deleting the
labels that can be inferred from the rules previously obtained.
Third, the instances with the reduced label space are handed to
a classification algorithm order to obtain the initial predictions.
CL can use any binary classifier for this task, retrieving
independent predictions for each label. LI-MLC can use any
multilabel classifier, retrieving joint predictions. Finally, these
initial predictions are completed and the final label set for
each instance is returned. In CL, this process is supported by
the DLs and the application of a statistical test, whereas in
LI-MLC, it is by the inference of the ARs.

One of the main differences between LI-MLC and the
proposals enumerated above lies in that they transform the
MLC problem into another type of problem: multiclass classi-
fication, regression, or binary classification, whereas LI-MLC
preserves its original multilabel nature. In addition, LI-MLC
does not rely on a decomposition of the global goal in several
simpler ones that have to be trained individually, and their
independent outputs later recombined. Once the ARs have
been extracted, a process that takes a very few seconds, only
one classifier has to be trained. The outputs of this classifier
are complemented with the inference of the ARs, without the
need of merging outputs from several predictors nor finding a
preimage by means of some decompression algorithm.

IV. CHARACTERIZATION OF LABEL

DISTRIBUTION IN MLD S

The proposed methodology will be useful if the labels in the
MLDs are not distributed in a very sparse way. Obviously, if
the Card measure is very low, it will be almost impossible to
obtain correlation between labels, since the number of samples
with two or more labels will not be enough. The Card measure
alone, however, will not give the information needed to know
if there are a few or many samples with two or more labels.
This measure is a mean of the number of labels in the whole
data set, without any information on how these labels are
distributed among the samples. Neither will the Dens measure
be useful, because this is simply Card divided by the total
number of labels. It is necessary to characterize the data sets
using additional measures.

The dispersion of labels in an MLD can be known calculat-
ing the coefficient of variation (CV), as shown in (7),σ being
the standard deviation andμ the mean. This is a measure
commonly used in imbalanced problems [40]. If Card is not
very low (there is more than one label per sample) and CV is
quite low (the labels are distributed uniformly), the likelihood
of finding correlations will be higher. With large CV values
(high dispersion), it could be difficult to obtain rules, even
when Card is also high

CV = σ

μ
. (7)

Another possibility for finding out the distribution of labels
is relying on two classical statistical measures [41]: 1) kurtosis
(KR) (8) and 2) skewness (SK) (9). In this context,xi must
be interpreted as a data sample. The former is an indication of

Fig. 2. Label distribution per instance (histogram).

the level of concentration of the distribution around a specific
value, while the latter points out where this value is. The higher
KR is the more peaked is the distribution of the variable and,
in this case, the more condensed will be the number of labels
per sample around the same value. On the other hand, SK is a
measure of asymmetry and can be positive or negative. When
the distribution is peaked (high KR) a positive SK denotes that
the bulk of the values are below the mean (lie to the left). By
contrast, a negative value implies the opposite, and most of
the values are above the mean (lie to the right). An SK near
zero suggests a symmetrical distribution

KR = E

(
xi − μ

σ

)4

− 3. (8)

SK = E

(
xi − μ

σ

)3

. (9)

In Fig. 2, the label distribution in four MLDs can be
observed. Two of them, scene and bibtex, have a high value of
KR and their SK is well above zero, so most of the samples in
these data sets have only one label associated. For emotions
and corel5k, the value of KR is near zero, meaning a more
uniform distribution. In the former, SK is also almost zero: the
bulk of the samples have the number of labels shown by the
Card measure. The latter shows a negative SK, and therefore
the number of labels per instance is above the mean for many
samples. It is easy to see that obtaining correlations between
labels will be more difficult for scene and bibtex than for
emotions and corel5k.

Another way to see the distribution of labels per instance in
a data set would be that shown in Fig. 3. Each row (y-axis) is a
sample and the columns (x-axis) represent the different labels.
The presence of one label in a certain sample is denoted as a
line in the crossing of both axes. Fig. 3(a) and (d) come from
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Fig. 3. Label distribution per instance (map). (a) Scene. (b) Bibtex.
(c) Bibtex. (d) Emotions. (e) Corel5k. (f) Corel5k.

very similar data sets, with the same total number of labels
and almost the same number of samples, but with a slightly
higher Card value for Fig. 3(d). This is enough to obtain many
samples with two or more labels, while in Fig. 3(a), it is clear
that each sample has only one label with a few exceptions.
Fig. 3(b) and (e) show two data sets with higher numbers of
samples, labels and Card. The main difference between them is
the dispersion:CV = 0.189 for Fig. 3(d) againstCV = 0.705
for Fig. 3(b). The effect of this factor can be observed better
in Fig. 3(c) and (f), magnifications of the previous ones.

The conclusion that could be obtained from this analysis is
that the combined use of measures, such as Card, CV, SK,
and KR, offer useful information to characterize an MLD,
knowing how difficult it would be to work with it. In general,
an extremely low Card (close to 1.0) will show that most of
samples have only one associated label, and therefore it would
be almost impossible to extract label dependency information.
With Card values well above 1.0, the presence of a high CV,
SK, or KR may denote a difficult MLD.

V. EXPERIMENTAL FRAMEWORK

LI-MLC has been tested with 16 MLDs and seven MLC
algorithms. Data sets and algorithms are detailed in the
following parts of this section.

The mining of ARs was performed with the FP-Growth
algorithm, which needs two parameters: the threshold values
for Conv and Supp. Conv threshold was set to a minimum
value of 1.25 as recommended in [37]. To obtain enough ARs
to work with, we opted to apply a relatively low minimum
threshold value for Supp, 0.025, with the hypothesis that even
nonfrequent but strong associations between labels would be
meaningful [42].

TABLE I

DATA SET CHARACTERISTICS

Cross validation was used with the usual configuration at
10 partitions. The same configuration was used to run each
MLC algorithm without applying LI-MLC.

In Section V-A, the MLDs used in the experimentation are
enumerated. The MLC algorithms and the parameters used
are described in Section V-B. Sections V-C and V-D detail the
performance measures and statistical tests applied.

A. Data Sets

Table I shows the data sets and their main characteristics:
number of instances, attributes and labels, and Card. Seven
of them (bibtex, bookmarks [43], delicious [23], enron [44],
llog, medical [45], and slashdot) are from the text domain,
three (corel5k [46], corel16k [47], and scene [12]) are from
the image domain, two (cal500 [48] and emotions [49]) are
from the music domain, two more (genbase [50] and yeast
[20]) from the biology domain, and the last two (imdb and
mediamill [51]) are from the video/movie domain. The number
of labels in those MLDs is in the range[6, 983] and Card
is in the range[1.074, 26.044]. All data sets can be obtained
from MULAN [1] and MEKA [52] repositories.

B. Algorithms

A representation of MLC algorithms based on data trans-
formation, method adaptation, and ensemble approaches was
selected. It should be noted that the transformation methods do
their work after the preprocessing phase of LI-MLC described
previously, operating on a reduced data set having already
eliminated the labels inferred from the rules.

The methods chosen, all used with default parameters,
were the following: BR [10], LP [12], CLR [11], CC [21],
IBLR-ML [17], RAkEL [22], and HOMER [23]. C4.5 was
used as underlying binary/multiclass classifier. For IBLR-ML,
the number of neighbors was set to 10. For HOMER, the
number of clusters was set to the minimum between four and
the number of labels in the MLD.
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C. Performance Measures

More than a dozen MLC performance measures have been
defined in [7] and [8]. One of the most widely used is
Hamming loss (HL).L being the full set of labels,Zi the set
of predicted labels, andYi is the set of real labels, HL (10) is
defined as the fraction of committed errors in sample–label
pairs prediction. The operator� represents the symmetric
difference

HL = 1

|D|
|D|∑

i=1

|Yi�Zi |
|L| . (10)

HL tends quickly to zero when it is used with some
MLDs, those in which only a small subset of labels appear
in each instance but the total set of labels is large. In this
context, using the same classifier and making the same number
of classification errors, the performance would seem worse
as the total number of labels is smaller. However, the real
performance of the classifier would be the same. Although HL
is a popular MLC performance measure, the previous reason
demands the use of another one, stronger than the former.
In [27], an evaluation on the strength of some MLC evaluation
measures is offered, showing that HL is the weakest and less
representative, whereas F-measure is one of the strongest.
F-measure has been chosen as second measure for this paper.

F-measure (11) is a balancedcombination of precision
(12) and recall (13). In this expressions, TP stands for true
positives, FP for false positives, and FN for false negatives

F-Measure= 2 ∗ Precision∗ Recall

Precision+ Recall
. (11)

Precision= 1

|D|
|D|∑

i=1

|Yi ∩ Zi |
|Zi | = TP

TP+ FP
. (12)

Recall= 1

|D|
|D|∑

i=1

|Yi ∩ Zi |
|Yi | = TP

TP+ FN
. (13)

D. Statistical Tests

To analyze whether the differences between obtained results
are significant, it is usual to perform statistical tests. In this
paper, the interest is in comparing values from the classifica-
tion of several data sets in pairs: one set of results from the
base MLC algorithm and a second set from the same algorithm
using LI-MLC methodology. For this task, the paired T-test
parametric test or the Wilcoxon nonparametric test could be
applied.

References [53] and [54] have shown that classification
experiments, which follow the 10-fold cross-validation scheme
do not fulfill the necessary conditions of normality, het-
eroscedasticity, and independence to use parametric statistical
tests. For this reason, to perform this kind of comparison, the
Wilcoxon [55] nonparametric statistical test has been used in
this paper.

For each algorithm, taking the performance measures of
the version with LI-MLC as reference, this test was applied
and the exact p-values obtained. The same method was also
used to compare the training times of each classifier. The tests

TABLE II

CHARACTERIZATION MEASURES

were executed using the statistical package of the data-mining
software KEEL [56].

VI. EXPERIMENTAL STUDY AND DISCUSSION

In this section, the data sets used in the experimentation
are characterized, the classification results are exposed, the
statistical study is shown, and a final discussion of these results
is offered.

A. Data Set Characterization

Using the measures proposed in Section IV, the analysis of
the high dimensionality in the label space in the data sets used
are offered in the following.

Table II shows the characterization measures Card, Dens,
CV, SK, and KR, as well as the average number of rules
obtained for each data set.

There are six cases: 1) bibtex; 2) bookmarks; 3) llog;
4) medical; 5) scene; and 6) slashdot in which no rules were
obtained. Four of them (llog, medical, scene, and slashdot)
have an extremely low Card, in the range [1.074, 1.245],
which explains by itself the impossibility of obtaining any
rules. bibtex and bookmarks have slightly larger Card values,
2.402 and 2.028, but also share quite high CV, SK, and KR
values. This denotes that only a few instances contain two or
more labels, while most of them have only one. By contrast,
data sets, such as emotions, with a Card value of 1.868 but
also low values in the other measures, allow the extraction of
some rules.

The previous are some general guidelines, but there are also
exceptions. For instance, the Card for medical is similar to
genbase, and CV is higher for the latter denoting a larger
dispersion, but in the former case, we had no rules, whereas in
the latter, some rules have been obtained. genbase has almost
half the total number of labels of medical. Although they have
similar Card values, the number of label combinations is much
bigger for medical (245) than for genbase (227).

B. Classification Results

Tables III and IV show the resulting HL and F-measure
values for each algorithm–data set combination in two
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TABLE III

CLASSIFIERPERFORMANCE INTERMS OFHL (THE LOWER THEBETTER)

TABLE IV

CLASSIFIERPERFORMANCE INTERMS OFF-MEASURE(THE HIGHER THE BETTER)

TABLE V

CLASSIFIERPERFORMANCE INTERMS OFTRAINING TIME IN SECONDS(THE LOWER THEBETTER)

versions: the original multilabel classifier, and the same
configuration applying the proposed methodology, noted as
+LI-MLC. The six data sets for which it was not possible
to obtain rules do not appear in this table, as LI-MLC is not
applicable in these cases.

Assessing results in terms of HL, we found improvements in
one-third of cases. There are several ties, as well as many cases
in which the difference in either direction is minimal, in the
range of a few ten thousandths. With delicious, for instance,
LI-MLC loses in all cases but all differences are in the
range [0.0001, 0.0004]. The significance of these differences
is doubtful, but in any case, the improvement in execution time
is very significant. The weaknesses of HL may be highlighted,
exposed previously in Section V-C.

The use of F-measure to assess the results offer a quite
different picture. In general, the differences are much bigger, in
the scale of hundredths. The application of LI-MLC generates
better results in 41 out of the 70 configurations. Classification
performance is almost always improved for corel16k, corel5k,
enron, and imdb. By contrast, the results are never improved
for two data sets: 1) mediamill and 2) yeast. Mixed results are

obtained for the rest of MLDs. Except for mediamill and yeast,
LI-MLC has mainly a positive influence over the performance
of the underlying classifiers. The statistical significance of
these results is evaluated in the following section.

Table V uses the same structure as the previous ones, but
exhibiting training times for each configuration, expressed in
seconds. This is the time elapsed when training the classifier
with the original base algorithm and with LI-MLC. In the
latter case, the time spent obtaining the rules and preprocessing
the data set has been added to the training time. As can
be observed, for some algorithm–data set combinations, the
training time has been reduced to a fraction of the original. The
savings in some cases are in the order of several hours. Taking
as reference the time of the base algorithm, Fig. 4 shows the
relative gain in time achieved by the classifier training process
once LI-MLC has been applied. It must be highlighted that
this improvement in execution time, in general, is achieved
without major damage to classification performance, but even
with an amelioration in manycases. For instance, the use of
LI-MLC with BR and RAkEL resulted in more than 22% and
15% of reduction of the execution time, while in classification
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Fig. 4. Relative gain of LI-MLC in respect of the base execution time.

TABLE VI

EXACT P-VALUES FROM WILCOXON TEST

evaluated with F-measure, these configurations was better in
six and seven of 10 cases, respectively.

C. Statistical Study

Reading the previous tables, a general view of the improve-
ments can be acquired. To know if this progression is
significant from a statistical point of view, Table VI shows the
p-values obtained by the Wilcoxon nonparametric statistical
test for HL, F-score, and training time.

As can be observed, the significance of classification
performance improvements will depend on the measure
chosen.

1) With HL all p-values are above 0.2, which would mean
that LI-MLC does not provide any benefit, which could
be considered statistically significant.

2) Taking F-measure as reference, for CC, CLR, and IBLR-
ML p-value < 0.1, and for BR, HOMER, LP, and
RAkEL p-value < 0.05. Therefore, LI-MLC offers a
statistically significant improvement with a 90% and
95% of confidence, respectively.

Regarding the execution time, all p-values are well below
0.05 except for CC. Thus, it can be said that LI-MLC
significantly reduces the time necessary to train the classifiers,
regardless of classification improvements.

Summarizing, LI-MLC offers a statistical significant
reduction of execution time, as well as some significant
improvements in classification results when they are evaluated
with F-measure, a measure considered stronger than HL. These
results can be justified for a number of reasons, discussed in
the following.

D. On the Benefits of Label Reduction Performed by LI-MLC

All classifiers have a certain error ratio, as do ARs. Labels
that are very common (have a large Supp in the data set) tend
to produce a bias in classifiers, benefiting the majority classes
(labels). The bias is reduced when LI-MLC hides these labels,
obtaining models better able to classify samples in which less
common labels appear. In some cases, the improvement in
classification results led by LI-MLC is greater than the error
introduced by the inference of the ARs.

For some methods like LP, reducing only one label halves
the number of combinations generated by the data set trans-
formation, resulting in a data set with far fewer classes,
and therefore easier to process with multiclass classifiers.
The ensemble methods based on LP transformation, such as
RAkEL and HOMER, benefit from this enhancement. Given
that for the bulk of the data sets, more than one rule is
obtained, the reduction in the number of combinations is much
more important, as will be the improvement in execution time.

Training a separate classifier for each label (BR method)
in the data set seems a good idea, and it works well in
many cases. However, this approach does not consider in its
predictions the dependency among labels, valuable information
as has been reported in [29] and [57]. ARs, on the other hand,
collect these dependencies when there are strong implications
as has been explained before, predicting the presence of a
label when it rests more on label dependency than on the
correlation between input attributes and their own label. Many
MLC algorithms use BR as an underlying transformation, so
an improvement in the base method also affects their results.

Regarding the time used by algorithms to build their
models, the reduction in the number of labels performed by
LI-MLC has a positive effect in almost all cases. The MLC
algorithms benefit from a reduced set of labels, and the time
spent applying LI-MLC is much lower than the time saved in
building the simplified model. Table VI shows that all p-values
are well under 0.05 (with the exception of CC), concluding that
a significant statistical difference exists.

With MLC algorithms that build a binary classifier for each
different label, such as BR and many ensemble proposals,
LI-MLC produces at least a linear improvement in execution
time with respect to the number of labels eliminated. When
working with algorithms based on a combinatorial use of exis-
tent labels, the improvement could be much more important.
In general, ensemble methods are benefited the most from the
label space reduction, as it spans all the individual models,
which compound the ensemble.

VII. C ONCLUSION

In this paper, LI-MLC, a transformation method designed
to reduce the number of labels in an MLD through the use of
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ARs, has been presented. This approach can be used with any
underlying MLC algorithm, allowing classifier training in less
time, resulting in simpler models and improving classification
results in many cases.

Furthermore, it has also been shown how it is possible to
use certain statistical measures (CV, SK, and KR) that, unlike
the Card and Dens measures by themselves, offer information
useful for knowing when it is appropriate to use the proposed
methodology. Without loss of generality, these measures can
be used to characterize MLDs to obtain a general view of the
distribution of labels in the data set.

The experimental results obtained over several MLDs with
different classification algorithms, endorsed by the results from
statistical tests, lead to the conclusion that it can be a useful
approach for enhancing MLC.
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