

Machine Learning y Ciencia de Datos

con Python y R

Francisco Charte
David Charte

MACHINE LEARNING Y CIENCIA DE DATOS CON PYTHON Y R

No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de los titulares del Copyright. Diríjase a CEDRO (Centro Español de Derechos Reprográficos, www.cedro.org) si necesita fotocopiar o escanear algún fragmento de esta obra.

DERECHOS RESERVADOS © 2021, respecto a la primera edición en español, por

Krasis Consulting, S. L.U. www.Krasis.com

ISBN: 978-84-945822-5-7 Depósito Legal: VG 52-2021

Impreso en España-Printed in Spain

Contenido

AGRADECIMIENTOS	III
CONTENIDO	V
AUTORES	xıx
CAPÍTULO I: CONCEPTOS FUNDAMENTALES	21
I Introducción	21
I.I Estrategias de aprendizaje	21
I.2 Definición de aprendizaje automático	22
1.2.1 Ejemplos	22
I.3 Ideas relacionadas	23
1.3.1 Inteligencia artificial	23
1.3.2 Estadística	23
1.3.3 Métodos numéricos	24
1.3.4 Métodos computacionales	24
1.3.5 Comparación de los distintos métodos	24
2 Paradigmas de aprendizaje y tipologías de problemas	25
2.1 Paradigmas de aprendizaje	25
2.2 Tipos de problemas	26
2.2.1 Tareas de aprendizaje supervisado	26
2.2.2 Tareas de aprendizaje no supervisado	27
2.2.3 Otros tipos de tareas de aprendizaje	28
3 Ejemplos de casos prácticos de aprendizaje automático	29
3.1 Bases de datos	29
3.2 El conjunto de datos iris	30
3.3 El conjunto de datos titanic	32
3.4 Aprendizaje supervisado	33
3.4.1 Clasificación de iris con árboles de decisión	33
3.4.2 Clasificación de titanic con los vecinos más cercanos	35
3.5 Aprendizaje no supervisado	36
3.5.1 Agrupamiento	37
3.5.2 Reglas de asociación	39
4 Herramientas y lenguajes	41
4.1 Python y Jupyter	41
4.1.1 Instalación en Windows	43
4.1.2 Instalación en macOS	44
4.1.2 Instalación en MacOS 4.1.3 Instalación en Linux	44
4.1.3 Instalacion en Linux	45
4.2.1 Ry RStudio	
4.2.1 Instalacion de R	

4.2.2 Instalación de RStudio	47
4.3 Uso de las herramientas mediante Docker	48
5 El entorno de trabajo para R	49
5.1 Inicio de RStudio	49
5.2 Paneles en el entorno de trabajo	51
5.3 Edición de guiones R	
5.4 Trabajo con notebooks	
5.5 Cómo realizar algunas tareas comunes	
5.5.1 Acceso a la documentación integrada	
5.5.2 Establecer la ruta de trabajo	
5.5.3 Guardar y recuperar la sesión de trabajo	
6 Introducción al lenguaje R	
6.1 El lenguaje R	
6.2 Operar con valores simples	
6.2.1 Tipos de datos básicos en R	
6.2.2 Operadores básicos	
6.3 Tipos de datos complejos	
6.3.1 Vectores	
6.3.2 Matrices	
6.3.3 Listas	
6.3.4 Conjuntos de datos	
6.4 Estructuras condicionales y de repetición	
6.4.1 Condicionales simples	
6.4.2 Bucles	
6.4.3 Condicionales vectorizados	70
6.5 Reutilización de código R	
6.5.1 Funciones	71
6.5.2 Scripts y notebooks	7771
6.5.3 Paquetes	
7 El entorno de trabajo para Python	77 7.1
7.1 Acceso a Jupyter Lab	
7.2 Componentes de Jupyter Lab	
7.2.1 Intérprete interactivo	
7.2.2 Edición de cuadernos	
7.2.3 Composición de guiones y ejecución interactiva	
8 Introducción al lenguaje Python	
8.1 El lenguaje Python	
8.2 Variables y operaciones simples	00
8.2.1 Tipos de dato básicos en Python	١٥
8.2.2 Asignación de variables	82
8.2.3 Operadores básicos	82
8.3 Tipos de dato complejos	82
8.3.1 Listas y tuplas	83
8.3.2 Diccionarios	83
8.4 Estructuras de control	85
84 L. Condicionales	85
8.4.1 Condicionales 8.4.2 Repetición	85
0.7.Z. Repeticion	86

8.5 Reutilización de código	87
8.5.1 Funciones	87
8.5.2 Clases y métodos	88
8.5.3 Instalación de paquetes y utilización de módulos	.88
9 Prácticas propuestas	89
CAPÍTULO 2: CARGA Y EXPORTACIÓN DE DATOS	٥.
CAPITULU 2: CARGA T EXPURTACION DE DATOS	ΆI
I Introducción	91
2 Carga de datos	
2.1 Conjuntos de datos integrados	
2.I.I R	
2.1.2 Python	
2.2 Carga de datos alojados en archivos	
2.2.1 Lectura de archivos CSV	
R	
Python	
2.2.2 Lectura de documentos Excel	
R	
Python	
2.2.3 Lectura de archivos ARFF	101
R	
Python	
2.3 Recuperación de datos desde el portapapeles	
2.3.1 R	
2.3.2 Python	
2.4 Obtención de datos desde páginas web	
2.4.1 URL como ruta de archivo	
2.4.2 Proceso de web scraping	
2.4.3 Obtención del selector de datos	
R	
Python	
3 Exportación de datos	
3.1 Exportación a formatos de texto	
3.1.1 R	
Exportación como CSV	112
Exportación como ARFF	114
3.1.2 Exportación como CSV con Python	114
3.2 Exportación a formatos binarios - R	115
3.2.1 Formatos binarios propios de R	116
3.2.2 Trabajar con archivos HDF5 desde R	117
3.3 Exportación a formatos binarios - Python	119
3.3.1 Formatos binarios propios de Python	119
3.3.2 Trabajar con archivos HDF5 desde Python	119
4 Prácticas propuestas	120

CAPÍTULO 3: ANÁLISIS EXPLORATORIO DE DATOS	23
I Introducción	123
I.I Herramientas para el análisis exploratorio de datos	
2 Obtención de estadísticos básicos	
2.1 Estadísticos de posición	
2.1.1 Definiciones y ejemplos	
Media aritmética	
Media geométrica y armónica	
Mediana	
Moda	
Percentiles y cuartiles	
2.2 Cálculo de estadísticos de posición con R	
2.2.1 Media aritmética	
2.2.2 Medias geométrica y armónica	
2.2.3 Mediana y moda	
2.2.4 Cuantiles	
2.3 Cálculo de estadísticos de posición con Python	
2.3.1 Media aritmética	
2.3.2 Medias armónica y geométrica	
2.3.3 Mediana y moda	
2.3.4 Cuantiles	
2.4 Estadísticos de dispersión	
2.4.1 Rangos	
2.4.2 Varianza y desviación típica	140
2.5 Cálculo de estadísticos de dispersión	
2.5.1 Cálculo con R	
2.5.2 Cálculo con Python	143
2.6 Estadísticos de forma	144
2.6.1 Definiciones y ejemplos	145
Coeficientes de asimetría	146
Coeficiente de curtosis	147
2.7 Cálculo de estadísticos de forma	
2.7.1 Cálculo con R	148
2.7.2 Cálculo con Python	
2.8 Distribuciones fundamentales	
2.8.1 Distribuciones de datos con R	
2.8.2 Distribuciones de datos con Python	152
3 Prácticas propuestas	
4 Visualización de los datos	
4.1 Representaciones gráficas: importancia y utilidad	
4.1.1 Importancia de la visualización de datos	
Análisis con estadísticos	
Análisis con visualización básica	156
4.1.2 Utilidad de las representaciones gráficas	157
4.2 Introducción a la generación de gráficas con R	
4.2.1 Paquetes para gráficas en R	159

4.2.2 El lienzo de dibujo de la gráfica	159
4.2.3 Agregar capas visibles sobre el lienzo	
4.2.4 Visualización de múltiples gráficas	
4.2.5 Gráficas a partir de funciones	
4.3 Introducción a la generación de gráficas con Python	
4.3.1 Paquetes para gráficas en Python	
4.3.2 El lienzo de dibujo de la gráfica	
4.3.3 Agregar capas visibles sobre el lienzo	
4.3.4 Visualización de múltiples gráficas y gráficas a partir de funciones	165
4.4 Gráficas de nubes de puntos	
4.4.1 Python	
4.4.2 R	168
4.5 Gráficas de barras	171
4.5.1 Python	
4.5.2 R	172
4.6 Histogramas	176
4.6.1 R	176
4.6.2 Python	179
4.7 Gráficas de líneas	181
4.7.1 R	181
4.7.2 Python	184
Versión básica	
Líneas que conectan puntos	185
Personalización de las gráficas de líneas	
4.8 Diagramas de cajas y bigotes	
4.8.1 R	
4.8.2 Python	
5 Prácticas propuestas	196
CAPÍTULO 4: LIMPIEZA DE DATOS	199
I Introducción	199
2 Exploración de los datos a limpiar	
2.1 La variable Edad	
2.2 La variable Sexo	
2.3 La variable Embarazos	205
2.4 Variables Sistolica y Diastolica	206
2.5 La variable Masa	207
3 Selección de muestras	
3.1 Eliminación de instancias duplicadas	207
3.1.1 R	202
3.1.2 Python	200
3.2 Python	
3.2.1 Python	
3.2.2 R	717
4 Eliminación de valores anómalos y datos perdidos	217
4.1. Tretemiente de valores anómales (autiem)	215
4.1 Tratamiento de valores anómalos (outliers)	216

	4.1.2 Python	21
	4.2 Borrado de muestras con valores perdidos	
	4.2.1 Python	
	4.2.2 R	
	5 Filtrado de variables	
	5.1 Conversión de tipo de una variable	
	5.1.1 R	
	5.1.2 Python	
	6 Tratamiento de variables redundantes	
	6.1 Python	
	6.2 Ř	
	7 Imputación de valores perdidos	
	7.1 Imputación de valores perdidos en variables numéricas	
	7.1.1 Python	235
	7.1.2 R	237
	7.2 Imputación de valores perdidos en variables nominales	240
	7.2.I R	241
	7.2.2 Python	
	7.3 Tratamiento de otros valores especiales	
	8 Planificación de las operaciones de limpieza	
	8.1 El orden es importante	
	8.2 Directrices generales	
	8.3 Limpieza con R	
	8.4 Limpieza con Python	
	9 Prácticas propuestas	247
_	APÍTULO 5: PREDICCIÓN DE VALORES NUMÉRICOS	240
_	AFTI DEO 3: PREDICCION DE VALORES NOMERICOS	47
	I Introducción	249
	I.I Problemas de regresión	
	I.2 Interpolación y extrapolación	
	I.3 Regresión lineal	
	1.3.1 Caso de estudio	
	1.3.2 Ajuste del modelo	252
	I.4 Otros métodos de regresión	253
	2 Predicción del precio de la vivienda	254
	2.1 Carga del conjunto de datos boston	255
	2.2 Estructura y variables	
	2.3 Análisis de valores perdidos y extremos	
	2.4 Análisis de correlaciones	
	2.5 Estudio de la variable objetivo de la predicción	
	3 Introducción a los árboles de decisión	
	3.1 Características básicas de los DT	
	3.2 Funcionamiento intuitivo de un DT	
	3.3 Tipos de nodos en un DT	
	3.4 Impureza de los nodos hoja	767
	3.5 Selección de las variables en nodos de decisión	

3.6 Criterios de detención de crecimiento	265
3.7 Poda de un DT	
4 Solución con árboles de decisión	267
4.1 Carga de paquetes y datos	
4.2 Generación y análisis del DT	268
4.3 Representación visual del DT	
4.4 Predicción de valores a partir del DT	
4.5 Configuración del proceso de generación del DT	
5 Evaluación de modelos predictivos	
5.1 Particionamiento de los datos	
5.2 Técnicas de evaluación	276
5.3 Evaluación de múltiples modelos alternativos	277
5.4 Un caso práctico	278
6 Introducción al diseño de redes neuronales	282
6.1 Qué son las redes neuronales	
6.1.1 Neuronas artificiales	
6.1.2 Funciones de activación	
6.1.3 Capas de neuronas	285
7 Implementación de redes neuronales en Python	
7.1 Capa de entrada	
7.2 Capa de salida	
7.3 Capas ocultas	287
7.4 Compilación y ajuste del modelo	288
7.5 Predicción de nuevos valores	
8 Solución con redes neuronales	289
8.1 Preparación de los datos	290
8.2 Definición del modelo	
8.3 Entrenamiento del modelo	
8.4 Evaluación del modelo	
9 Prácticas propuestas	293
CAPÍTULO 6: AGRUPAMIENTO DE DATOS	297
CAI IT DEG U. ACROT AI HERT O DE DAT CO	
I Introducción	297
I.I Objetivo	297
I.2 Técnicas de agrupamiento	299
2 Cómo medir la distancia entre dos muestras	301
2.1 Distancia euclídea	302
2.2 Distancia Manhattan	303
2.3 Distancia del máximo	304
2.4 Generalización: distancias de Minkowski	
2.5 Otras distancias: Levenshtein y coseno	305
2.5.1 Distancia de Levenshtein	305
2.5.2 Similitud del coseno	306
3 Agrupamiento por particionamiento - K-medias	307
3.1 Estandarización de magnitudes	30/
3.2 Cómo medir la similitud-distancia de grupos	308
3.3 - El algoritmo K-medias	309

4 Agrupamiento con K-medias en R	309
4.1 Un primer acercamiento	310
4.2 Visualización del agrupamiento	211
5 K-medias: estimación del número de grupos	313
5.1 Estimación con la función pamk()	214
5.2 Estimación analizando el SSE	314
6 Problemas del algoritmo K-medias	310
6.1 Número de grupos y aleatoriedad	310
6.2 Fallos al tratar con datos que tienen estructura compleja	210
6.2.1 Conjuntos de datos en el paquete milhench	220
6.2.2 Resultados de K-medias sobre datos compleios	331
6.3 Influencia de datos extremos	333
7 Agrupamiento por densidad	323
7.1 Conceptos previos	324
7.2 El algoritmo DBSCAN	325
7.3 Agrupamiento con DBSCAN en R	326
/.3.1 Uso básico de dbscan()	326
7.3.2 Analisis de los grupos generados	220
7.4 Limitaciones de DBSCAN	330
6 Agrupamiento jerarquico	330
8.1 Interpretación de dendrogramas	331
6.2 Construcción de la jerarquia	332
8.3 Uso del agrupamiento jerárquico en Python	333
9 Prácticas propuestas	336
CAPÍTULO 7: CLASIFICACIÓN BINARIA	339
La Introducción	
I Introducción	339
1.1 Tipos de clasificación	340
2 Clasificación mediante técnicas de regresión	341
2.1 Transformar iris en un problema de clasificación binaria	341
2.2 Particionamiento de los datos	342
2.3 Análisis exploratorio de los datos	342
2.4 Creación del modelo y uso para clasificación	343
2.6 Visualización de la frontera de división	344
3 - Clasificación con tácnicas de agrupamiente	345
3 Clasificación con técnicas de agrupamiento	346
3.1 Creación del modelo	346
3.3 Evaluación del clasificador	348
4 Clasificación automática de correo basura	349
4.1 Generación de un conjunto de datos a partir de mensajes de correo	350
4.2 El conjunto de datos Spambase	350
421 - Variables predictoras	352
4.2.1 Variables predictoras	352
4.3 Análisis exploratorio del conjunto de datos	353
4.3.1 Distribución de las clases	353
Distribution de las clases	353

	4.3.2 Uso de mayúsculas según tipo de mensaje	
	4.3.3 Aparición de ciertos símbolos según tipo de correo	
	4.3.4 Frecuencia de las palabras dependiendo del tipo de correo	
_	4.4 Agrupamiento de las muestras con K-Medias	
5	Introducción a las máquinas de vectores soporte	359
	5.1 Características básicas de las SVM	
	5.1.1 Margen de separación máximo	
	5.1.2 Margen de separación flexible	
	5.1.3 Los vectores de soporte	
	5.1.4 Proceso de predicción	362
	5.2 Funcionamiento intuitivo de una SVM	
	5.2.2 Paso 2	
	5.2.3 Paso 3	
	5.2.4 Paso 4	
	5.3 Búsqueda de separabilidad en dimensiones superiores	
	5.3.1 Funciones linealmente separables en un plano: AND y OR	367
	5.3.2 Funciones no linealmente separables en un plano: XOR	369
	5.3.3 Aplicación de un kernel para proyectar en un espacio de más alta	507
	dimensionalidaddimensionalidad	369
	5.4 Ventajas y desventajas de las SVM	370
	5.4.1 SVM para clasificación no binaria	371
	5.4.2 Resumiendo	
6	Solución usando máquinas de vectores soporte	
	6.1 Particionamiento de los datos	373
	6.2 Entrenamiento del modelo	
	6.2.1 Configuración de validación interna	
	6.2.2 Información sobre el modelo	
	6.3 Predicción para nuevos datos	
	6.3.1 Obtención de predicciones	
	6.3.2 Evaluación del rendimiento predictivo	379
	6.4 Ajuste de parámetros con búsqueda en cuadrícula	380
	6.4.1 Cómo definir la matriz de combinaciones	380
	6.4.2 Entrenamiento y evaluación	381
	6.4.3 Comparación de diferentes configuraciones	383
	6.5 Normalización y optimización usando otras métricas	384
	6.5.1 Normalización de los datos	
	6.5.2 Optimizar el modelo usando otras métricas	
	6.6 Comparativa de los modelos sobre datos de test	
7	Evaluación del rendimiento predictivo de un clasificador (I)	
	7.1 Cómo medir el rendimiento de un clasificador	
	7.2 Evaluación de clasificadores binarios con salida discreta	
	7.2.1 La matriz de confusión	
	7.3 Exactitud, precisión y sensibilidad	
	7.3.1 Exactitud	
	7.3.2 Precisión	
	7.3.3 Sensibilidad (TPR)	394

7.3.4 Equilibrio entre precisión y sensibilidad	394
7.4 Otras métricas obtenidas de la matriz de confusión	396
7.4.1 Especificidad	397
7.4.2 False Positive Rate (FPR)	397
/.4.3 Kappa	398
7.5 Uso combinado de múltiples métricas	300
8 Entrenamiento de redes neuronales	400
8.1 Optimización de una red	401
8.2 Selección de pesos	401
8.3 Selección de hiperparámetros	402
9 Solución usando una red neuronal	403
9.1 Diseno del modelo	404
9.2 Entrenamiento	404
9.3 Evaluación del modelo	406
10 Evaluación del rendimiento predictivo de un clasificador (II)	408
10.1 Umbralizacion de la salida	408
10.1.1 El umbral de corte trivial	409
10.1.2 Ajuste del umbral de corte	409
10.2 Curva ROC y AUC	410
II Prácticas propuestas	411
CAPÍTULO 9. CLASIFICACIÓN MULTIGUACE	
CAPÍTULO 8: CLASIFICACIÓN MULTICLASE	413
I Introducción	413
2 Clasificación de dígitos numéricos manuscritos	413
2.1 Origen del conjunto de datos MNIST	414
2.2 Obtención de MNIST	414
2.2.1 Desde R	415
2.2.2 Desde Python	415
2.3 Estructura de MNIST	416
2.3.1 Visualización de los dígitos	416
2.3.2 Análisis exploratorio	417
3 Introducción a kNN	419
3.1 Modelos predictivos perezosos	421
3.2 Funcionamiento de kNN	421
3.2.1 El algoritmo básico kNN	422
3.2.2 Implementación básica de kNN en R	423
3.3 Aspectos a considerar al usar kNN	423
3.3.1 Selección del valor k	428
3.3.7. Mátricas do distancia entre museum	428
3.3.2. Métricas de distancia entre muestras	429
3.3.3 Otras aplicaciones de kNN	429
3.3.4 Ventajas e inconvenientes de kNN	430
4 Solución con vecinos más cercanos en R	430
4.1. Carga de paquetes y preparación de datos	431
4.1.1 Selección de particiones de entrenamiento y test	432
4.2 Entrenamiento básico de kNN	432
4.3 Optimización de otros parámetros de kNN	131

4.3.1 Métricas de distancia	434
4.3.2 Predicción ponderando las distancias	435
4.3.3 kNN con optimización de todos los parámetros	
4.4 Comparativa de los dos modelos	
4.5 Análisis de rendimiento sobre datos de test	438
4.5.1 Matriz de confusión multiclase	
4.5.2 Representación gráfica de la matriz de confusión	440
4.6 Paralelización al usar caret	
4.6.1 Configuración de una ejecución en múltiples núcleos	
4.6.2 Análisis de la diferencia de rendimiento	
5 Evaluación del rendimiento predictivo de un clasificador (III)	
5.1 Matriz de confusión extendida	
5.1.1 Conteo de casos por clase	447
5.2 Cálculo de métricas en problemas multiclase	
5.2.1 Conteo de casos por clase	
5.2.2 Procedimientos de cálculo de las métricas	450
Macro-averaging	45
Micro-averaging	
5.2.3 Qué métricas usar para evaluar un clasificador	
6 La operación de convolución	
6. I Formulación	454
6.2 Ejemplo	455
7 De la convolución a las redes convolucionales	
7.1 Otras operaciones de las redes convolucionales	
7.2 Redes convolucionales	
7.3 Arquitecturas populares	
8 Solución con una red neuronal convolucional	
8.1 Diseño de la red	
8.2 Entrenamiento de la red	
8.3 Evaluación	
8.4 Comparativa	
9 Prácticas propuestas	
CAPÍTULO 9: SISTEMAS DE RECOMENDACIÓN	469
I Introducción	
2 Conceptos sobre sistemas de recomendación (SR)	
2.1 Análisis de la cesta de la compra	
2.2 Tipos de SR	
2.2.1 Filtrado de contenido	
2.2.2 Filtrado colaborativo	
2.2.3 Sistemas híbridos	
3 El conjunto de datos Groceries	
3.1 El formato de archivo basket	
3.2 Estructura del conjunto de datos	
3.2.1 Carga del conjunto de datos	
3.2.2 Dimensiones del conjunto de datos	
3 2 3 - Frumeración de las columnas	477

3.2.4 Exploración de transacciones	477
3.2.5 Frecuencias de los productos	
4 Introducción a las reglas de asociación	
4.1 ¿Qué es una regla de asociación?	480
4.2 Métricas de evaluación de reglas de asociación	
4.2.1 Soporte de un itemset	
4.2.2 Confianza de una regla	482
4.2.3 Lift de una regla	
5 Minería de reglas de asociación	485
5.1 Búsqueda de reglas mediante fuerza bruta	485
5.1.1 Generación de todos los itemset posibles	486
5.1.2 Búsqueda de combinaciones de pares de itemset	486
5.1.3 Evaluación y filtrado de las reglas	487
5.2 El algoritmo Apriori	487
5.2.1 Configuración de umbrales	488
5.2.2 Extracción de itemset frecuentes	488
6 Minería de reglas de asociación con R	489
6.1 Configuración y extracción de reglas	491
6.1.1 Ejecución con parámetros por defecto	491
6.1.2 Configuración del soporte y confianza mínimos	492
6.2 Exploración de las reglas	493
6.2.1 Resumen estadístico de características de las reglas	493
6.2.2 Inspección de las reglas	494
6.3 Evaluación de calidad de las reglas	496
6.3.1 Ordenar las reglas por una métrica	497
6.3.2 Filtrado de reglas	498
6.3.3 Representaciones gráficas adicionales	499
7 Obtención de reglas para el sistema de recomendación	501
7.1 Extracción de reglas con una apariencia concreta	502
7.2 Construcción del sistema de recomendación	503
7.2.1 Función para obtención de las reglas	503
7.2.2. Extracción de los productos recomendados	504
7.2.3 Probando el sistema de recomendación	505
8 Prácticas propuestas	506
CAPÍTULO 10: PROBLEMAS AVANZADOS - CASOS DE ESTUDIO	EOO
STATE OF THE PERIOD AND AVAILABLE STODIO	307
I Introducción	509
2 Uso de múltiples modelos para mejorar los resultados	510
2.1 Tipos de ensembles	511
2.1.1 Aspectos generales	511
Diversidad en los modelos	512
Estrategia de combinación de salidas	512
Ensembles homogéneos vs heterogéneos	513
2.1.2 Bagging	513
2.1.3 Boosting	514
2.1.4 Random Forest	514

2.2 Ensembles en R	515
2.2.1 Uso de ensembles con el paquete caret	
Ensembles homogéneos	
Ensembles heterogéneos	
3 Eliminación de ruido en imágenes	
3.1 Qué es un autoencoder	
3.1.1 Representaciones y códigos	
3.1.2 Arquitectura de un autoencoder	
3.1.3 Limpieza de imágenes con autoencoders	
3.2 Diseño de autoencoders con Keras	
4 Predicción de series temporales	
4.1 ¿Qué es una serie temporal?	
4.2 Tipos de series temporales	
4.3 Funcionamiento de la predicción de series temporales	
4.4 Componentes de una serie temporal	
4.4.1 Nuestra serie temporal de ejemplo	
4.4.2 Descomposición de la serie	528
Tendencia de la serie	529
Estacionalidad de la serie	
Componente aleatoria	
¿Qué componentes tiene mi serie temporal?	
4.5 Predicción de series temporales con ARIMA	
4.5.1 ¿Qué es ARIMA?	531
4.5.2 Parámetros de entrada a ARIMA	532
4.5.3 Validación de la predicción	533
5 Detección de objetos en imágenes	533
5.1 Conceptos fundamentales	534
5.2 Transfer learning	534
5.3 Redes neuronales para detección de objetos	535
5.3.1 Modelos multietapa	536
5.3.2 Modelos de una etapa	536
YOLO	537
SSD	
CenterNet	
5.4 Detección de objetos en Python	
5.4.1 Instalación de la API de detección de objetos	538
5.4.2 Descarga del modelo	540
5.4.3 Uso de la API de detección de objetos	540
6 Búsqueda de soluciones a problemas de optimización difíciles	542
6.1 Problemas clásicos de optimización	543
6.1.1 Problema del viajante de comercio	543
6.1.2 Problema de la mochila	543
6.1.3 Problemas de optimización continua	
6.2 Métodos de optimización	545
6.3 Técnicas de optimización evolutivas	546
4.3.1. Euroignamiente general de les técnices evolutives	544

6.3.2 Algoritmos de optimización basados en principios evolutivos/bioló	gicos
	547
6.3.3 Equilibrio entre explotación y exploración	549
6.4 Algoritmos genéticos	
6.4.1 Pasos esenciales del algoritmo	
6.4.2 Representación de los individuos	
6.4.3 El mecanismo de selección	
6.4.4 El operador de mutación	
6.4.5 El operador de cruce	
7 Modelado generativo de datos	
7.1 Redes neuronales generativas	
7.1.1 Redes adversariales	
7.1.2 Autoencoders generativos	
Autoencoder variacional	
Autoencoder adversarial	557
7.2 Implementación de redes generativas en Python	558
7.2.1 Componentes de un autoencoder adversarial	
7.2.2 Construcción del modelo	
7.2.3 Entrenamiento y predicción	
8 Prácticas propuestas	

Francisco Charte

Dr. Ingeniero Informático

Autor de numerosos libros y centenares de artículos en revistas nacionales e internacionales, Francisco es ingeniero informático y Doctor en tecnologías de la información y la comunicación.

Está especializado en ciencia de datos y ML, con amplia experiencia en proyectos reales.

David Charte

Ingeniero Informático

Ingeniero informático y matemático apasionado por la divulgación del conocimiento, David, trabaja y hace investigación en el campo de la ciencia de datos y ML.

Ha participado en multitud de proyectos para varios sectores dentro de estos campos.

La inteligencia artificial (AI) y el aprendizaje automático (ML) forman parte de nuestras vidas, incluso sin que lo notemos: las recomendaciones que recibimos en muchos sitios online, los asistentes personales, la detección de fraudes o un "simple" buscador efectivo. La utilizas cada día sin saberlo. Y con la Internet de las cosas (IoT) y la hiperconectividad que trae el 5G, cada vez se incorporará a más procesos, como los coches autónomos, la gestión de la energía, la gestión de la producción en las fábricas, la definición de estrategias de marketing y ventas, el reconocimiento de voz y los flujos de atención al cliente...

El aprendizaje automático o machine learning es la ciencia de conseguir que una computadora haga cosas para las que no está explícitamente programada. Es decir, en lugar de programarlo de una determinada manera, logramos que aprenda de forma autónoma para lograr el objetivo perseguido. La ciencia de datos, también llamada "descubrimiento de conocimiento" involucra las técnicas y modelos para extraer conocimiento no evidente a partir de datos: localizar patrones ocultos, correlaciones relevantes o conclusiones complejas.

Diseñado por dos experimentados científicos de datos, con este libro, profundo, pero al mismo tiempo claro, aprenderás desde cero todo el proceso de trabajo para ciencia de datos y machine learning, incluyendo los conceptos fundamentales subyacentes y la práctica necesaria para ponerlos a trabajar sin problema según tus propias necesidades o las de tu empresa. Al mismo tiempo, aprenderás lo necesario para utilizar los dos lenguajes más comunes en ciencia de datos: Python y R. Además de estos lenguajes, utilizarás entre otras las herramientas: ggplot, caret, arules, Keras, Numpy, Matplotlib, Tensorflow, Pandas, SciPy...

Nivel: Iniciación - Intermedio - Avanzado

